STEP 2006, Paper 1, Q4 - Solution (3 pages; 13/5/18)
[There are a couple of 'typos' in the H\&As - see below.]
[Radians must be used here, in order for the gradient of $y=\sin x$ to tend to 1 as $x \rightarrow 0$]

Fis. 1
(i) The gradient of $y=\sin x$ at $x=0$ is $\cos (0)=1$, and for small $x>0$ it is $\cos x<1$ and ≤ 1 for larger values of x; ie the graph of $y=\sin x$ falls below that of $y=x$ and is never steeper than it, so that $x>\sin x$ for $x>0$
(ii) For small x, the graphs of $y=\sin x$ and $y=x$ have approximately the same gradient of 1 (as $\cos x \approx 1$ for $\operatorname{small} x)$, and, as they both pass through the Origin, it follows that $\sin x \approx x$, and hence $\frac{\sin x}{x} \approx 1$ for small x

Fig. 2

The regular pentagon shown in Fig. 2 is representative of a general polygon. The area of the triangle shown is $\frac{1}{2}\left(\frac{P}{n}\right) h$ where $h \tan \theta=\frac{1}{2}\left(\frac{P}{n}\right)$ and $\theta=\frac{1}{2}\left(\frac{2 \pi}{n}\right)=\frac{\pi}{n}$
Thus the area of the polygon, A (say) is $n\left(\frac{1}{2}\right)\left(\frac{P}{n}\right) \frac{1}{2}\left(\frac{P}{n}\right) / \tan \left(\frac{\pi}{n}\right)$ $=\frac{P^{2}}{4 \operatorname{ntan}\left(\frac{\pi}{n}\right)}$, as required.

$$
\frac{d A}{d n}=\frac{P^{2}}{4}(-1)\left(n \tan \left(\frac{\pi}{n}\right)\right)^{-2}\left\{\tan \left(\frac{\pi}{n}\right)+n \sec ^{2}\left(\frac{\pi}{n}\right)(\pi)(-1) n^{-2}\right\}
$$

[The H\&A are missing the (-1) near the start.]
We wish to show that $\frac{d A}{d n}>0$
$\Leftrightarrow \tan \left(\frac{\pi}{n}\right)+n \sec ^{2}\left(\frac{\pi}{n}\right)(\pi)(-1) n^{-2}<0$
$\Leftrightarrow \tan x<x \sec ^{2} x$, where $x=\frac{\pi}{n}$
$\Leftrightarrow \frac{\sin x}{\cos x}<\frac{x}{\cos ^{2} x}$
$\Leftrightarrow \frac{\sin x}{x}<\frac{1}{\cos x}(1)\left(\right.$ as $\left.x>0 \& \cos x=\cos \left(\frac{\pi}{n}\right)>0\right)$
[In the H\&A, the line which ends with "which tells us that $\sin x<x$ ", should start with ">", rather than "<"] As $\frac{\sin x}{x}<1$ from (i) and $1<\frac{1}{\cos x}$ for small $x>0$, it follows that (1) is true, and hence that $\frac{d A}{d n}>0$

From Fig. 2, the radius of the circle, r satisfies $r \sin \theta=\frac{1}{2}\left(\frac{P}{n}\right)$
and hence the area of the circle, C (say) is $\pi\left(\frac{\left(\frac{P}{2 n}\right)}{\sin \left(\frac{\pi}{n}\right)}\right)^{2}=\frac{x P^{2}}{4 n \sin ^{2} x}$
and so $\frac{A}{C}=\frac{\left(\frac{P^{2}}{4 n \tan x}\right)}{\left(\frac{x P^{2}}{4 n \sin ^{2} x}\right)}=\frac{\sin ^{2} x \cos x}{x \sin x} \approx \cos x$, as $\frac{\sin x}{x} \approx 1$
So, as $\cos x \approx 1$ for small $x=\frac{\pi}{n}, \frac{A}{C} \approx 1$, as required.

