STEP 2006, Paper 1, Q1 - Solution (4 pages; 12/5/18)
[Squaring 3 digit numbers is obviously a bit time-consuming without a calculator. There are a couple of devices that can be used here though: namely linear interpolation and difference of two squares.]

First of all, $100^{2}=10000 \& 200^{2}=40000$
Linear interpolation gives an approximate value for x such that
$x^{2}=33000: \quad x \approx 100 \times \frac{7}{30}+200 \times \frac{23}{30}=\frac{70+460}{3}=\frac{530}{3}=176 \frac{2}{3}$
Because of the convex shape of $y=x^{2}, \frac{530}{3}$ will be an underestimate for x (see diagram below).

So we could perhaps try 180 next:

$$
180^{2}=100(100+64+160)=32400
$$

Note now that $181^{2}-180^{2}=(181+180)(181-180)=361$ and that $182^{2}-181^{2}=(182+181)(1)=363$

So $182^{2}=32400+361+363=32400+724=33124$
(and $\left.183^{2}=33124+365\right)$
Thus $182^{2}<33127<183^{2}$; ie $n=182$
Check: $182^{2}=(100+80+2)^{2}$
$=10000+6400+4+2(8000+200+160)$
$=16404+2(8360)=16404+16720=33124$

From the earlier working,
$183^{2}-33127=(33124+365)-33127=362$
$184^{2}-33127=(33124+365+367)-33127$
$=362+367=729=27^{2}$
ie $m=2$

So $184^{2}-33127=27^{2}$,
and hence $33127=184^{2}-27^{2}=(184+27)(184-27)$
$=211(157)$

Suppose that $(182+m)^{2}-33127=r^{2}$ (where r is an integer),
so that $33127=(182+m)^{2}-r^{2}=(182+m+r)(182+m-r)$

We need to see if 211 and 157 have any factors:

211 is found to be prime (we only have to consider factors up to 15 , as $15^{2}>211$, and so a factor greater than 15 requires another one less than 15), as is 157 (considering factors up to 13).
$33127=(182+m+r)(182+m-r)$ then implies that one of the following is true:
(i) $182+m+r=211 \& 182+m-r=157$,
giving $m=2 \& r=27$, as above
(ii) $182+m+r=157 \& 182+m-r=211$,
which is the same as (i), except that r is replaced by $-r$;
so once again $m=2$ (and $r=-27$)
(iii) $182+m+r=33127 \& 182+m-r=1$,
in which case $m+r=32945 \& m-r=-181$,
so that $2 m=32764 \& m=16382$
(iv) $182+m+r=1 \& 182+m-r=33127$,
which is the same as (iii), except that r is replaced by $-r$;
so once again $m=16382$
Thus there are only two values for m and the other value is 16382.
[In the official solutions, the factorisation
$33127=(16564-16563)(16564+16563)$ is (presumably)
arrived at by noting that $(182+m)-r=1$, with
$(182+m)+r=33127$ (ie (iii) above), so that $(182+m) \& r$ differ by 1 and add to give 33127 ; it is then just a matter of halving 33127 to give $33127=2(16563)+1$, so that
$33127=16564+16563$; then $182+m=16564$
and hence $m=16382$]

