STEP 2006, Paper 1, Q14 - Solution (2 pages; 16/5/18)
(i) If X is the number of draws needed in order to obtain the 1 st red sweet, then $X \sim \operatorname{Geo}(p)$, where p, the probability of success (ie drawing a red), is $\frac{1}{n+1}$

So $\operatorname{Prob}(X=r)=\left(\frac{n}{n+1}\right)^{r-1}\left(\frac{1}{n+1}\right)=\frac{n^{r-1}}{(n+1)^{r}}$
Stationary point(s) occur when
$\frac{d}{d n} \frac{n^{r-1}}{(n+1)^{r}}=0 ;$
so that $\frac{(n+1)^{r}(r-1) n^{r-2}-n^{r-1}(r)(n+1)^{r-1}}{(n+1)^{2 r}}=0$
$\Rightarrow(n+1)^{r-1} n^{r-2}\{(n+1)(r-1)-n r\}=0$
$\Rightarrow-n+r-1=0 \Rightarrow n=r-1$
We need to rule out the possibilities of a minimum or a point of inflexion [though the official sol'n doesn't mention this].
The fact that $\frac{n^{r-1}}{(n+1)^{r}} \rightarrow 0$ as $n \rightarrow \infty$ rules out a (local) minimum or a point of inflexion of the same shape as $y=x^{3}$, as either of these would imply the existence of a maximum for a larger value of n, which contradicts the fact that there is only one stationary point. In order to rule out a point of inflexion of the same shape as $y=-x^{3}$, we can examine the sign of $\frac{d}{d n} \frac{n^{r-1}}{(n+1)^{r}}$ at $n=r-2$:

From (A) \& (B), the required sign will be that of
$\{(n+1)(r-1)-n r\}$ when $n=r-2 ;$
ie of $(r-1)(r-1)-(r-2) r=-2 r+1+2 r=1$

So $\frac{d}{d n} \frac{n^{r-1}}{(n+1)^{r}}>0$ to the left of $n=r-1$, which rules out a point of inflexion of the same shape as $y=-x^{3}$ (unless there was another maximum to the left, which gives a contradiction, as before).

Hence the probability is maximised when $n=r-1$
[As a check for reasonableness, consider two extreme situations:
$\mathrm{A}: r=5$ and B: $r=100$
For A, a large n such as 100 would give a much smaller probability than $n=4$

For B, the probability of taking 100 goes to obtain the 1 st red is much smaller for say $n=5$ than for $n=99$]
(ii) $\operatorname{Prob}(X=r)=\left(\frac{n}{n+1}\right)\left(\frac{n-1}{n}\right)\left(\frac{n-2}{n-1}\right) \ldots\left(\frac{n-[r-2]}{n-[r-2]+1}\right)\left(\frac{1}{n-[r-2]}\right)$ $=\frac{1}{n+1}$

This is maximised when n is minimised, and it's tempting to say that this occurs when $n=0$ (there's also the issue of whether there can be no blue sweets in the bag (there probably could)).

However there is another constraint: $r \leq n+1$;ie $n \geq r-1$, so that n is minimised when $n=r-1$

Approach 2: as in the official solutions

