STEP 2006, Paper 1, Q13 - Solution (2 pages; 16/5/18)
[Note that the Poisson distribution is in the STEP $1 \& 2$ syllabus.]
(i) $\mathrm{P}(0$ diamonds $\mid \mathrm{N}$ rolled $)=e^{-\frac{N}{10}}$,
as number of diamonds $\sim \operatorname{Po}\left(\frac{N}{10}\right)$
So $\mathrm{P}(0$ diamonds $)=\sum_{N=1}^{6} P(N$ rolled $) \mathrm{P}(0$ diamonds $\mid \mathrm{N}$ rolled $)$
$=\sum_{N=1}^{6} \frac{1}{6} e^{-\frac{N}{10}}$
$=\frac{1}{6} e^{-\frac{1}{10}} \frac{\left(1-e^{-\frac{6}{10}}\right)}{1-e^{-\frac{1}{10}}}$ (the sum of a Geometric series), as required
$\mathrm{E}($ number of diamonds $)=$
$\sum_{N=1}^{6} P(N$ rolled $) E($ number of diamonds $\mid N$ rolled)
$=\sum_{N=1}^{6} \frac{1}{6}\left(\frac{N}{10}\right)=\frac{1}{60}\left(\frac{1}{2}\right)(6)(7)=\frac{7}{20}=0.35$, as required
(ii) $\mathrm{P}(1$ st 6 on Tth throw $)=\left(\frac{5}{6}\right)^{T-1}\left(\frac{1}{6}\right)$

So $\mathrm{P}(0$ diamonds $)=\sum_{T=1}^{\infty}\left(\frac{5}{6}\right)^{T-1}\left(\frac{1}{6}\right) e^{-\frac{T}{10}}$
$=\frac{1}{6}\left(\frac{5}{6}\right)^{-1} \sum_{T=1}^{\infty}\left(\frac{5}{6}\right)^{T} e^{-\frac{T}{10}}$
$=\frac{1}{5} \sum_{T=1}^{\infty}\left(\frac{5}{6} e^{-\frac{1}{10}}\right)^{T}$
$=\frac{1}{5}\left(\frac{5}{6} e^{-\frac{1}{10}}\right) \frac{1}{1-\frac{5}{6} e^{-\frac{1}{10}}}$
$=\frac{e^{-\frac{1}{10}}}{6-5 e^{-\frac{1}{10}}}$, as required
$\mathrm{E}($ number of diamonds $)=\sum_{T=1}^{\infty}\left(\frac{5}{6}\right)^{T-1}\left(\frac{1}{6}\right)\left(\frac{T}{10}\right)$
$=\frac{1}{60} \sum_{T=1}^{\infty}\left(\frac{5}{6}\right)^{T-1} T$
$\left[(1-x)^{-2}\right.$ will be useful because it is the derivative of
$(1-x)^{-1}=1+x+x^{2}+\cdots$, and will therefore have terms of the form $T x^{T-1}$]

Consider $(1-x)^{-2}=$
$1+(-2)(-x)+\frac{(-2)(-3)}{2!}(-x)^{2}+\frac{(-2)(-3)(-4)}{3!}(-x)^{3}+\cdots$
$=1+2 x+3 x^{2}+4 x^{3}+\cdots$
Thus $E($ number of diamonds $)=\frac{1}{60}\left(1-\frac{5}{6}\right)^{-2}$
$=\frac{36}{60}=\frac{6}{10}=0.6$

