STEP 2006, Paper 1, Q12 - Solution (2 pages; 15/5/18)
Let D \& E be the roads that have 2 sections that could be blocked, and F the road with one such section.
$\mathrm{P}(\mathrm{O}$ is cut off from C$)$
$=\mathrm{P}(\mathrm{D}$ is blocked $) \mathrm{P}(\mathrm{E}$ is blocked $) \mathrm{P}(\mathrm{F}$ is blocked $)$
$\mathrm{P}(\mathrm{D}$ is blocked $)=\mathrm{P}(\mathrm{E}$ is blocked $)=1-\mathrm{P}($ road is not blocked $)$
$=1-(1-p)(1-p)=2 p-p^{2}$
Hence $\mathrm{P}(0$ is cut off from C$)=\left(2 p-p^{2}\right)^{2} p=p^{3}(2-p)^{2}$, as required.

P (cut off via other roads \mid a clear road has been selected)
$=\frac{P(\text { clear road selected and cut off via other roads })}{P(\text { clear road selected })}$

P(clear road selected)
$=P(D$ or E selected $) P($ it is clear $)+P(F$ selected $) P($ it is clear $)$
$=\frac{2}{3}(1-p)^{2}+\frac{1}{3}(1-p)=\frac{1}{3}(1-p)(2-2 p+1)$
$=\frac{1}{3}(1-p)(3-2 p)$
P (clear road selected and cut off via other roads)
$=P(D$ chosen $) P(D$ clear $) P(E$ blocked $) P(F$ blocked $)$
$+P(E$ chosen $) P(E$ clear $) P(D$ blocked $) P(F$ blocked $)$
$+P(F$ chosen $) P(F$ clear $) P(D$ blocked $) P(E$ blocked $)$

As the 1st two terms are equal,

$$
\begin{aligned}
& \text { Prob. }=(2)\left(\frac{1}{3}\right)(1-p)^{2}\left[1-(1-p)^{2}\right] p \\
& +\frac{1}{3}(1-p)\left[1-(1-p)^{2}\right]^{2} \\
& =\frac{1}{3}(1-p)\left(2 p-p^{2}\right)\left\{2(1-p) p+\left(2 p-p^{2}\right)\right\} \\
& =\frac{1}{3} p(1-p)(2-p)\left\{4 p-3 p^{2}\right\} \\
& =\frac{1}{3} p^{2}(1-p)(2-p)(4-3 p)
\end{aligned}
$$

So required prob. $=\frac{p^{2}(2-p)(4-3 p)}{3-2 p}$
As $p \rightarrow 1$, prob. $\rightarrow \frac{1(2-1)(4-3)}{3-2}=1$
[Note: There is a (university level) theorem which says that $\lim _{x \rightarrow L} \frac{A(x)}{B(x)}=\frac{\lim _{x \rightarrow L} A(x)}{\lim _{x \rightarrow L} B(x)}$, provided that $\lim _{x \rightarrow L} A(x) \& \lim _{x \rightarrow L} B(x)$ are both constants]

As $p \rightarrow 1$, we would expect that, were we lucky enough to find an unblocked road, it would be increasingly likely that the other two roads would both be blocked.

