STEP 2006, Paper 1, Q11 – Solution (3 pages; 15/5/18)

All velocities are > 0

(i)

As the total momentum is > 0, if there is just one particle moving at the end, it must be A_n .

Then the momentum and kinetic energy of A_n must equal that of A_0 .

So $\lambda m v_n = mu \& \frac{1}{2} \lambda m v_n^2 = \frac{1}{2} m u^2$

Hence $\lambda v_n^2 = (\lambda v_n)^2$ and $\lambda = \lambda^2$, so that $\lambda = 0$ or 1, which contradicts the fact that $\lambda > 1$

(ii)

If only A_{n-1} & A_n are moving at the end, then, by conservation of momentum (CoM), the initial velocity of A_{n-1} is u.

Then by CoM, $mu = mv_{n-1} + \lambda mv_n$, so that $u = v_{n-1} + \lambda v_n$ (1) And by Conservation of energy (CoE),

 $\frac{1}{2}mu^2 = \frac{1}{2}mv_{n-1}^2 + \frac{1}{2}\lambda mv_n^2 \text{ , so that } u^2 = v_{n-1}^2 + \lambda v_n^2 (2)$ Then (1) & (2) $\Rightarrow v_{n-1}^2 + 2\lambda v_{n-1}v_n + \lambda^2 v_n^2 = v_{n-1}^2 + \lambda v_n^2$ and $2\lambda v_{n-1}v_n + \lambda^2 v_n^2 - \lambda v_n^2 = 0$, so that $2v_{n-1} + \lambda v_n - v_n = 0$ (as $\lambda \otimes v_n$ are $\neq 0$) Then $v_n = \frac{-2v_{n-1}}{\lambda - 1}$, which contradicts the assumption that $v_{n-1} \otimes v_n$ are both > 0 (since $\lambda > 0$).

(iii) Even if A_{n-2} is moving as well as $A_{n-1} \& A_n$, the same argument can be used as in (ii), replacing u with the initial velocity of A_{n-1} , since momentum and energy are conserved for the collision between $A_{n-1} \& A_n$.

(iv)

By (ii), the 2 particles can't be $A_{n-1} \& A_n$, and so must be $A_0 \& A_n$

By CoM, $mu = m(-v_0) + \lambda m v_n$, so that $u = \lambda v_n - v_0$ (3) By CoE, $\frac{1}{2}mu^2 = \frac{1}{2}mv_0^2 + \frac{1}{2}\lambda m v_n^2$, so that $u^2 = v_0^2 + \lambda v_n^2$ (4) Then (3) & (4) $\Rightarrow \lambda^2 v_n^2 - 2\lambda v_n v_0 + v_0^2 = v_0^2 + \lambda v_n^2$, so that $\lambda^2 v_n^2 - 2\lambda v_n v_0 - \lambda v_n^2 = 0$ and hence $\lambda v_n - 2v_0 - v_n = 0$ (as $\lambda \otimes v_n$ are both $\neq 0$) Then from (3), $v_0 = \lambda v_n - u$, so that $\lambda v_n - 2(\lambda v_n - u) - v_n = 0$ and hence $v_n(-\lambda - 1) + 2u = 0$ and $v_n = \frac{2u}{\lambda + 1}$ Then from (3) again, $v_0 = \lambda v_n - u = \lambda \left(\frac{2u}{\lambda + 1}\right) - u$ $= \frac{u}{\lambda + 1} (2\lambda - (\lambda + 1)) = \frac{u(\lambda - 1)}{\lambda + 1}$