STEP 2006, Paper 1, Q11 - Solution (3 pages; 15/5/18)
All velocities are >0
(i)

As the total momentum is >0, if there is just one particle moving at the end, it must be A_{n}.

Then the momentum and kinetic energy of A_{n} must equal that of A_{0}.

So $\lambda m v_{n}=m u$ \& $\frac{1}{2} \lambda m v_{n}{ }^{2}=\frac{1}{2} m u^{2}$
Hence $\lambda v_{n}{ }^{2}=\left(\lambda v_{n}\right)^{2}$ and $\lambda=\lambda^{2}$, so that $\lambda=0$ or 1 , which contradicts the fact that $\lambda>1$
(ii)

If only $A_{n-1} \& A_{n}$ are moving at the end, then, by conservation of momentum (CoM), the initial velocity of A_{n-1} is u.

Then by CoM, $m u=m v_{n-1}+\lambda m v_{n}$, so that $u=v_{n-1}+\lambda v_{n}$
And by Conservation of energy (CoE),
$\frac{1}{2} m u^{2}=\frac{1}{2} m v_{n-1}{ }^{2}+\frac{1}{2} \lambda m v_{n}{ }^{2}$, so that $u^{2}=v_{n-1}{ }^{2}+\lambda v_{n}{ }^{2}$
Then (1) \& (2) $\Rightarrow v_{n-1}{ }^{2}+2 \lambda v_{n-1} v_{n}+\lambda^{2} v_{n}{ }^{2}=v_{n-1}{ }^{2}+\lambda v_{n}{ }^{2}$ and $2 \lambda v_{n-1} v_{n}+\lambda^{2} v_{n}^{2}-\lambda v_{n}^{2}=0$,
so that $2 v_{n-1}+\lambda v_{n}-v_{n}=0\left(\right.$ as $\lambda \& v_{n}$ are $\left.\neq 0\right)$
Then $v_{n}=\frac{-2 v_{n-1}}{\lambda-1}$, which contradicts the assumption that $v_{n-1} \& v_{n}$ are both $>0($ since $\lambda>0)$.
(iii) Even if A_{n-2} is moving as well as $A_{n-1} \& A_{n}$, the same argument can be used as in (ii), replacing u with the initial velocity of A_{n-1}, since momentum and energy are conserved for the collision between $A_{n-1} \& A_{n}$.
(iv)

By (ii), the 2 particles can't be $A_{n-1} \& A_{n}$, and so must be $A_{0} \& A_{n}$

By CoM, $m u=m\left(-v_{0}\right)+\lambda m v_{n}$, so that $u=\lambda v_{n}-v_{0}$ (3)
By CoE, $\frac{1}{2} m u^{2}=\frac{1}{2} m v_{0}{ }^{2}+\frac{1}{2} \lambda m v_{n}{ }^{2}$, so that $u^{2}=v_{0}{ }^{2}+\lambda v_{n}{ }^{2}$
Then (3) \& (4) $\Rightarrow \lambda^{2} v_{n}{ }^{2}-2 \lambda v_{n} v_{0}+v_{0}{ }^{2}=v_{0}{ }^{2}+\lambda v_{n}{ }^{2}$,
so that $\lambda^{2} v_{n}{ }^{2}-2 \lambda v_{n} v_{0}-\lambda v_{n}{ }^{2}=0$
and hence $\lambda v_{n}-2 v_{0}-v_{n}=0\left(\right.$ as $\lambda \& v_{n}$ are both $\left.\neq 0\right)$
Then from (3), $v_{0}=\lambda v_{n}-u$,
so that $\lambda v_{n}-2\left(\lambda v_{n}-u\right)-v_{n}=0$
and hence $v_{n}(-\lambda-1)+2 u=0$ and $v_{n}=\frac{2 u}{\lambda+1}$
Then from (3) again, $v_{0}=\lambda v_{n}-u=\lambda\left(\frac{2 u}{\lambda+1}\right)-u$
$=\frac{u}{\lambda+1}(2 \lambda-(\lambda+1))=\frac{u(\lambda-1)}{\lambda+1}$

