STEP 2006, Paper 1, Q10 - Solution (3 pages; 15/5/18)

$\binom{x}{y}=\binom{\frac{V}{\sqrt{2}}}{\frac{V}{\sqrt{2}}} t+\frac{1}{2}\binom{0}{-g} t^{2}$,
so that $x=\frac{V t}{\sqrt{2}} \& y=\frac{V t}{\sqrt{2}}-\frac{g t^{2}}{2}$
and hence $y=x-\frac{g}{2}\left(\frac{x \sqrt{2}}{V}\right)^{2}=x-\frac{g x^{2}}{V^{2}}$
At points where the curve intersects the line $y=x \tan \alpha+b$,

$$
\begin{align*}
& x-\frac{g x^{2}}{V^{2}}=x \tan \alpha+b \\
& \Rightarrow g x^{2}+x V^{2}(\tan \alpha-1)+V^{2} b \tag{1}
\end{align*}
$$

If the particle just touches the roof, (1) has repeated roots and so $\Delta=0$:

$$
\begin{aligned}
& V^{4}(\tan \alpha-1)^{2}-4 g V^{2} b=0 \\
& \Rightarrow V^{2}|\tan \alpha-1|=2 V \sqrt{g b}
\end{aligned}
$$

In order for the particle to reach the roof, $\alpha<45^{\circ}$,
and so $V(1-\tan \alpha)=2 \sqrt{g b}$
giving $V(-1+\tan \alpha)=-2 \sqrt{b g}$, as required

If T is the required time, $x_{R}=\frac{V}{\sqrt{2}} T$, where x_{R} is the x coordinate of R, which is the repeated root of (1),
so that $x_{R}=\frac{-V^{2}(\tan \alpha-1)}{2 g}(2)$ and $T=\frac{V(1-\tan \alpha)}{g \sqrt{2}}$

In order for P and Q to meet, Q must take time T to reach R .

Referring to the diagram above,
N2L along the slope gives $-m g \sin \alpha=m a$,
so that $a=-g \sin \alpha$
and $x_{R}=\left(U T-\frac{1}{2} g \sin \alpha . T^{2}\right) \cos \alpha$

Combining (2), (3) \& (4) gives:
$\frac{-V^{2}(\tan \alpha-1)}{2 g}=\frac{V(1-\tan \alpha)}{g \sqrt{2}}\left(U-\frac{1}{2} g \sin \alpha\left(\frac{V(1-\tan \alpha)}{g \sqrt{2}}\right)\right) \cos \alpha$
$\Rightarrow V=\sqrt{2}\left(U-\frac{V(1-\tan \alpha) \sin \alpha}{2 \sqrt{2}}\right) \cos \alpha$
$\Rightarrow V+\frac{V(1-\tan \alpha) \sin \alpha \cos \alpha}{2}=\sqrt{2} U \cos \alpha$
$\Rightarrow 2 \sqrt{2} U \cos \alpha=V(2+(1-\tan \alpha) \sin \alpha \cos \alpha)$
$=V\left(2+\sin \alpha \cos \alpha-\sin ^{2} \alpha\right)$, as required

