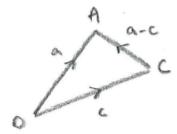
STEP 2005, Paper 3, Q8 - Solution (4 pages; 12/5/18)

$$|a - c|^2 = (a - c)(a - c)^* = (a - c)(a^* - c^*)$$

= $aa^* + cc^* - ac^* - ca^*$, as required (1)



By the Cosine rule, $|c|^2 = |a|^2 + |a - c|^2 - 2|a||a - c|cosA$

$$A = 90^{\circ} \Leftrightarrow cosA = 0$$
 (as $A < 180^{\circ}$)

 $\Leftrightarrow |c|^2 = |a|^2 + |a - c|^2 \text{ , since } |a| \neq 0 \& |a - c| \neq 0 \text{ (as } a \neq c)$

[this justification is necessary in order for the ⇐ part of the statement to be established]

[Alternatively, just use the fact that Pythagoras' theorem holds if and only if the triangle is right-angled - as per the Hints & Answers.]

$$\Leftrightarrow \text{from (1) that } |c|^{2} - |a|^{2} - (aa^{*} + cc^{*} - ac^{*} - ca^{*}) = 0$$

$$\Leftrightarrow |c|^{2} - |a|^{2} - (|a|^{2} + |c|^{2} - ac^{*} - ca^{*}) = 0$$

$$\Leftrightarrow -2|a|^{2} + ac^{*} + ca^{*} = 0$$

$$\Leftrightarrow -2|a|^{2} + ac^{*} + ca^{*} = 0$$

$$ac^{*} + ca^{*} = 2|a|^{2} = 2aa^{*}, \text{ as required}$$

[being careful not to seem to jump to the answer given]

P lies on the circle $\Leftrightarrow |ab - c|^2 = |a - c|^2$ (1) P' lies on the circle $\Leftrightarrow |\frac{a}{b^*} - c|^2 = |a - c|^2$ (2)

and, as OA (extended) is a tangent to the circle, it follows that OA is perpendicular to AC, so that $A = 90^{\circ}$ and hence $2aa^* = ac^* + ca^*$ (3),

from the previous result

[It is also worth looking ahead to the last part of the question, in case this could influence how we approach the present part.]

From the initial result,

$$(1) \Leftrightarrow ab(ab)^{*} + cc^{*} - abc^{*} - c(ab)^{*} = aa^{*} + cc^{*} - ac^{*} - ca^{*}$$

and
$$(2) \Leftrightarrow \frac{a}{b^{*}} \left(\frac{a}{b^{*}}\right)^{*} + cc^{*} - \left(\frac{a}{b^{*}}\right)c^{*} - c\left(\frac{a}{b^{*}}\right)^{*} = aa^{*} + cc^{*} - ac^{*} - ca^{*}$$

$$ca^{*}$$

Noting that $\left(\frac{a}{b^*}\right)^* = \frac{a^*}{b}$, cancelling the cc^* terms and multiplying by bb^* , this $\Leftrightarrow aa^* - ac^*b - ca^*b^* = aa^*bb^* - ac^*bb^* - ca^*bb^*$ $\Leftrightarrow aa^* - ac^*b - ca^*b^* - aa^*bb^* + ac^*bb^* + ca^*bb^* = 0$ (2')

[the last step is intended to make it easier to compare with (1)]

Then (1)
$$\Leftrightarrow aa^* - ac^* - ca^* - aa^*bb^* + abc^* + ca^*b^* = 0$$
 (1')

We could replace $aa^* - ac^* - ca^*$ with $-aa^*$, from (3), but noting that the last part of the question involves (3), it may be best to write

$$E = 2aa^* - ac^* - ca^* \text{ for the time being (where (3) } \Leftrightarrow E = 0)$$

Thus (1') $\Leftrightarrow E - aa^* - aa^*bb^* + abc^* + ca^*b^* = 0$ (1'')

[We want to show that $(2') \Leftrightarrow (1'')$. One technique is to force (1'') into the form of (2'):]

fmng.uk

Then $(1'') \Leftrightarrow -E + aa^* + aa^*bb^* - abc^* - ca^*b^* = 0$ and considering (2'), this $\Leftrightarrow (aa^* - ac^*b - ca^*b^* - aa^*bb^* + ac^*bb^* + ca^*bb^*)$ $+(2aa^*bb^* - ac^*bb^* - ca^*bb^*) - E = 0$ (1''') Writing $F = 2aa^*bb^* - ac^*bb^* - ca^*bb^*$,

we can then say that $(1''') \Leftrightarrow (2')$ if it can be shown that F = 0 (since

(3) $\Leftrightarrow E = 0$) Now $F = (2aa^* - ac^* - ca^*)bb^* = Ebb^* = 0$

For the last part, if we write

$$G = aa^* - ac^*b - ca^*b^* - aa^*bb^* + ac^*bb^* + ca^*bb^*,$$

then (1) $\Leftrightarrow G + Ebb^* - E = 0,$
(2) $\Leftrightarrow G = 0,$
and (3) $\Leftrightarrow E = 0$

Then, if (1) and (2) hold, it follows that $Ebb^* - E = 0$,

ie $E(bb^* - 1) = 0$, so that, since $bb^* \neq 1$, E = 0ie $2aa^* - ac^* - ca^* = 0$, from which it follows that $A = 90^\circ$ and B

from which it follows that $A = 90^{\circ}$ and hence OA is a tangent to the circle

[Note how it's worth developing the various equations at the same time, in order to get ideas as to the best way to proceed.]

fmng.uk