$=a a^{*}+c c^{*}-a c^{*}-c a^{*}$, as required

By the Cosine rule, $|c|^{2}=|a|^{2}+|a-c|^{2}-2|a||a-c| \cos A$
$A=90^{\circ} \Leftrightarrow \cos A=0\left(\right.$ as $\left.A<180^{\circ}\right)$
$\Leftrightarrow|c|^{2}=|a|^{2}+|a-c|^{2}$, since $|a| \neq 0 \&|a-c| \neq 0($ as $a \neq c)$
[this justification is necessary in order for the \Leftarrow part of the statement to be established]
[Alternatively, just use the fact that Pythagoras' theorem holds if and only if the triangle is right-angled - as per the Hints \& Answers.]
\Leftrightarrow from (1) that $|c|^{2}-|a|^{2}-\left(a a^{*}+c c^{*}-a c^{*}-c a^{*}\right)=0$
$\Leftrightarrow|c|^{2}-|a|^{2}-\left(|a|^{2}+|c|^{2}-a c^{*}-c a^{*}\right)=0$
$\Leftrightarrow-2|a|^{2}+a c^{*}+c a^{*}=0$
$\Leftrightarrow-2|a|^{2}+a c^{*}+c a^{*}=0$
$a c^{*}+c a^{*}=2|a|^{2}=2 a a^{*}$, as required
[being careful not to seem to jump to the answer given]

P lies on the circle $\Leftrightarrow|a b-c|^{2}=|a-c|^{2}$
P^{\prime} lies on the circle $\Leftrightarrow\left|\frac{a}{b^{*}}-c\right|^{2}=|a-c|^{2}$
and, as OA (extended) is a tangent to the circle, it follows that OA is perpendicular to AC , so that $A=90^{\circ}$ and hence $2 a a^{*}=a c^{*}+$ $c a^{*}$ (3),
from the previous result
[It is also worth looking ahead to the last part of the question, in case this could influence how we approach the present part.]

From the initial result,
(1) $\Leftrightarrow a b(a b)^{*}+c c^{*}-a b c^{*}-c(a b)^{*}=a a^{*}+c c^{*}-a c^{*}-c a^{*}$
and (2) $\Leftrightarrow \frac{a}{b^{*}}\left(\frac{a}{b^{*}}\right)^{*}+c c^{*}-\left(\frac{a}{b^{*}}\right) c^{*}-c\left(\frac{a}{b^{*}}\right)^{*}=a a^{*}+c c^{*}-a c^{*}-$ $c a^{*}$

Noting that $\left(\frac{a}{b^{*}}\right)^{*}=\frac{a^{*}}{b}$, cancelling the $c c^{*}$ terms and multiplying by $b b^{*}$, this $\Leftrightarrow a a^{*}-a c^{*} b-c a^{*} b^{*}=a a^{*} b b^{*}-a c^{*} b b^{*}-c a^{*} b b^{*}$
$\Leftrightarrow a a^{*}-a c^{*} b-c a^{*} b^{*}-a a^{*} b b^{*}+a c^{*} b b^{*}+c a^{*} b b^{*}=0$
[the last step is intended to make it easier to compare with (1)]
Then (1) $\Leftrightarrow a a^{*}-a c^{*}-c a^{*}-a a^{*} b b^{*}+a b c^{*}+c a^{*} b^{*}=0 \quad\left(1^{\prime}\right)$
We could replace $a a^{*}-a c^{*}-c a^{*}$ with $-a a^{*}$, from (3), but noting that the last part of the question involves (3), it may be best to write
$E=2 a a^{*}-a c^{*}-c a^{*}$ for the time being (where (3) $\Leftrightarrow E=0$)
Thus (1^{\prime}) $\Leftrightarrow E-a a^{*}-a a^{*} b b^{*}+a b c^{*}+c a^{*} b^{*}=0\left(1^{\prime \prime}\right)$
[We want to show that $\left(2^{\prime}\right) \Leftrightarrow\left(1^{\prime \prime}\right)$. One technique is to force ($1^{\prime \prime}$) into the form of (2^{\prime}):]

Then $\left(1^{\prime \prime}\right) \Leftrightarrow-E+a a^{*}+a a^{*} b b^{*}-a b c^{*}-c a^{*} b^{*}=0$ and considering (2^{\prime}), this
$\Leftrightarrow\left(a a^{*}-a c^{*} b-c a^{*} b^{*}-a a^{*} b b^{*}+a c^{*} b b^{*}+c a^{*} b b^{*}\right)$
$+\left(2 a a^{*} b b^{*}-a c^{*} b b^{*}-c a^{*} b b^{*}\right)-E=0 \quad\left(1^{\prime \prime \prime}\right)$
Writing $F=2 a a^{*} b b^{*}-a c^{*} b b^{*}-c a^{*} b b^{*}$,
we can then say that $\left(1^{\prime \prime \prime}\right) \Leftrightarrow\left(2^{\prime}\right)$ if it can be shown that $F=0$ (since
(3) $\Leftrightarrow E=0$)

Now $F=\left(2 a a^{*}-a c^{*}-c a^{*}\right) b b^{*}=E b b^{*}=0$

For the last part, if we write
$G=a a^{*}-a c^{*} b-c a^{*} b^{*}-a a^{*} b b^{*}+a c^{*} b b^{*}+c a^{*} b b^{*}$,
then $(1) \Leftrightarrow G+E b b^{*}-E=0$,
(2) $\Leftrightarrow G=0$,
and (3) $\Leftrightarrow E=0$

Then, if (1) and (2) hold, it follows that $E b b^{*}-E=0$, ie $E\left(b b^{*}-1\right)=0$,
so that, since $b b^{*} \neq 1, E=0$
ie $2 a a^{*}-a c^{*}-c a^{*}=0$,
from which it follows that $A=90^{\circ}$ and hence OA is a tangent to the circle
[Note how it's worth developing the various equations at the same time, in order to get ideas as to the best way to proceed.]

