STEP 2005, Paper 3, Q3 - Solution (3 pages; 12/5/18)
$f(g(x))=\left(x^{2}+r x+s\right)^{2}+p\left(x^{2}+r x+s\right)+q$
$=x^{4}+r^{2} x^{2}+s^{2}+2 r x^{3}+2 s x^{2}+2 r s x+p x^{2}+p r x+p s+q$
$=x^{4}+2 r x^{3}+\left(r^{2}+2 s+p\right) x^{2}+(2 r s+p r) x+s^{2}+p s+q$
Equating coefficients,
$a=2 r$
$b=r^{2}+2 s+p$
$c=2 r s+p r=r(2 s+p)=\frac{a}{2}\left(b-\left(\frac{a}{2}\right)^{2}\right)$
$d=s^{2}+p s+q$
$\Leftrightarrow c=\frac{a}{8}\left(4 b-a^{2}\right) \quad$ (1) (as q is just chosen to be $\left.d-s^{2}+p s\right)$
[Let A be the statement that (1) is true, and B the statement that the quartic can be written in the form $f(g(x))$. We have shown that A and B are equivalent. The official solution seems to labour this a bit, by showing (as a sort of check) how $f(g(x))$ is actually obtained, if A applies. In the above equations, $2 s+p$ can be treated as a single parameter ($b \& c$ are both functions of $2 s+p$; had they been independent functions of $s \& p$, then it would just be a matter of solving simultaneous equations, in order to find the required values of $s \& p$, and no condition would be necessary). In the official solution, p is set equal to 0 , to simplify matters. However, it is doubtful whether it is worth going to this trouble for future questions: normally the examiners are happy if the equivalence symbol \Leftrightarrow is used (provided that the equivalence is clear). The one consolation with this often fiddly issue, is that, although a few marks may be dropped by omitting a full proof, it doesn't prevent progress with the rest of the question.] k

Equating coefficients, to give the following set of equations (2):
$a=2 v$
$b=v^{2}+2 w$
$c=2 v w$
$d=w^{2}-k$
(2) is equivalent to $b=\left(\frac{a}{2}\right)^{2}+2\left(\frac{c}{a}\right)$ for suitable $u, v \& w$ $\Leftrightarrow 4 a b=a^{3}+8 c \Leftrightarrow c=\frac{a}{8}\left(4 b-a^{2}\right)$, which is (1)

From the equation $x^{4}-4 x^{3}+10 x^{2}-12 x+4=0$, we can obtain suitable values for $v, w \& k$, from (2), as follows:

Let $-4=2 v, 10=v^{2}+2 w,-12=2 v w \quad \& 4=w^{2}-k$
Thus $v=-2$,
$10=4+2 w \Rightarrow w=3[$ and $-12=2(-2)(3)]$
and $k=9-4=5$
So the equation becomes $\left(x^{2}-2 x+3\right)^{2}-5=0$
$\Rightarrow x^{2}-2 x+3 \pm \sqrt{5}=0$
$\Rightarrow x=\frac{2 \pm \sqrt{4-4(3 \pm \sqrt{5})}}{2}=1 \pm \sqrt{-2 \pm \sqrt{5}}$,
and hence the roots are $1 \pm \sqrt{\sqrt{5}-2}$ and $1 \pm i \sqrt{\sqrt{5}+2}$
[Because Further Maths knowledge is assumed for STEP 3, the roots in the last part should include complex ones.]

