## **STEP 2005, Paper 3, Q2 - Solution** (2 pages; 11/5/18)

[According to the Examiner's Report, this question was attempted by almost all candidates. There are 3 "show that" results, and the method is standard, making it a very promising question. The solution is not particularly long (and this is reasonably evident from the question).]

$$\frac{dy}{dx} = -\frac{xy}{x^2 + a^2} \Rightarrow 2 \int \frac{1}{y} dy = -\int \frac{2x}{x^2 + a^2} dx$$
  

$$\Rightarrow 2 \ln|y| = -\ln(x^2 + a^2) + \ln(A) \text{, where } A > 0$$
  

$$\Rightarrow \ln(y^2) = \ln\left(\frac{A}{x^2 + a^2}\right)$$
  

$$\Rightarrow y^2 = \frac{A}{x^2 + a^2}$$
  

$$\Rightarrow y^2(x^2 + a^2) = c^2 \text{ (as } A > 0)$$

To sketch the curve:

(a) 
$$x = 0 \Rightarrow y = \pm \frac{c}{a}$$
;  $y = 0$  only occurs at  $x = \pm \infty$ 

(b) The curve is defined for all values of *x*.

(c) As 
$$x \to \pm \infty$$
,  $y \to 0$ 

(d) To find the range of *y*:

$$y^2 = \frac{c^2}{x^2 + a^2}$$
, so that  $y^2$  is maximised when  $x = 0$ ; ie  $y$  lies in  $\left[-\frac{c}{a}, \frac{c}{a}\right]$ 

(though  $y \neq 0$ )

(e) 
$$\frac{dy}{dx} = 0 \Rightarrow x = 0 \text{ or } y = 0 \text{ (not possible, but } \frac{dy}{dx} \to 0 \text{ as } y \to 0 \text{)}$$
  
(f)  $\frac{dy}{dx} > 0 \text{ when } x > 0 \& y < 0 \text{ or } x < 0 \& y > 0$ 

$$\frac{dy}{dx} < 0$$
 when  $x > 0 \& y > 0$  or  $x < 0 \& y < 0$ 

(g) Replacing x with -x or y with -y has no effect, so there is symmetry about both the x & y axes.

$$\frac{d}{dx}(x^2 + y^2) = 2x + 2y\frac{dy}{dx} = 2x - \frac{2xy^2}{x^2 + a^2} = 2x - \frac{2xc^2}{(x^2 + a^2)^2}$$
  
Then  $\frac{d^2}{dx^2}(x^2 + y^2) = 2 - \frac{2c^2}{(x^2 + a^2)^4} \{(x^2 + a^2)^2(1) - x(2)(x^2 + a^2)(2x)\}$ 
$$= 2\left\{1 - \frac{c^2}{(x^2 + a^2)^2}\right\} + \frac{8c^2x^2}{(x^2 + a^2)^3} \text{, as required}$$

(i) Distance from Origin 
$$= x^2 + y^2$$

To minimise this distance:

$$\frac{d}{dx}(x^{2} + y^{2}) = 0 \Rightarrow 2x \left\{ 1 - \frac{c^{2}}{(x^{2} + a^{2})^{2}} \right\} = 0$$
  

$$\Rightarrow x = 0 \text{ or } x^{2} + a^{2} = c \quad (1)$$
  
But as  $c < a^{2}, x^{2} + a^{2} = c$  is not possible; so  $x = 0$   

$$\frac{d^{2}}{dx^{2}}(x^{2} + y^{2})|(x = 0) = 2 \left\{ 1 - \frac{c^{2}}{a^{4}} \right\} > 0, \text{ as } c < a^{2}$$

Thus the distance from the Origin is minimised when x = 0, and  $y^2a^2 = c^2$ , so that  $y = \pm \frac{c}{a}$ , as required.



(ii) When  $c > a^2$ , from (1), either x = 0 or  $x^2 + a^2 = c$ For x = 0:  $c > a^2 \Rightarrow \frac{d^2}{dx^2}(x^2 + y^2)|(x = 0) < 0 \Rightarrow maximum$ For  $x^2 + a^2 = c$ :  $\frac{d^2}{dx^2}(x^2 + y^2)|(x^2 + a^2 = c) = 0 + \frac{8c^2(c-a^2)}{c^3} = \frac{8(c-a^2)}{c} > 0$ , as  $c > a^2 > 0$ , so that there is a minimum at  $x = \pm \sqrt{c - a^2}$ ,

when  $y^2 = c$ , and hence the required points are  $(\pm \sqrt{c - a^2}, \pm \sqrt{c})$