STEP 2005, Paper 3, Q2 - Solution (2 pages; 11/5/18)
[According to the Examiner's Report, this question was attempted by almost all candidates. There are 3 "show that" results, and the method is standard, making it a very promising question. The solution is not particularly long (and this is reasonably evident from the question).]
$\frac{d y}{d x}=-\frac{x y}{x^{2}+a^{2}} \Rightarrow 2 \int \frac{1}{y} d y=-\int \frac{2 x}{x^{2}+a^{2}} d x$
$\Rightarrow 2 \ln |y|=-\ln \left(x^{2}+a^{2}\right)+\ln (A)$, where $A>0$
$\Rightarrow \ln \left(y^{2}\right)=\ln \left(\frac{A}{x^{2}+a^{2}}\right)$
$\Rightarrow y^{2}=\frac{A}{x^{2}+a^{2}}$
$\Rightarrow y^{2}\left(x^{2}+a^{2}\right)=c^{2}($ as $A>0)$

To sketch the curve:
(a) $x=0 \Rightarrow y= \pm \frac{c}{a} ; y=0$ only occurs at $x= \pm \infty$
(b) The curve is defined for all values of x.
(c) As $x \rightarrow \pm \infty, y \rightarrow 0$
(d) To find the range of y :
$y^{2}=\frac{c^{2}}{x^{2}+a^{2}}$, so that y^{2} is maximised when $x=0$; ie y lies in $\left[-\frac{c}{a}, \frac{c}{a}\right]$
(though $y \neq 0$)
(e) $\frac{d y}{d x}=0 \Rightarrow x=0$ or $y=0\left(\right.$ not possible, but $\frac{d y}{d x} \rightarrow 0$ as $\left.y \rightarrow 0\right)$
(f) $\frac{d y}{d x}>0$ when $x>0 \& y<0$ or $x<0 \& y>0$
$\frac{d y}{d x}<0$ when $x>0 \& y>0$ or $x<0 \& y<0$
(g) Replacing x with $-x$ or y with $-y$ has no effect, so there is symmetry about both the $x \& y$ axes.
$\frac{d}{d x}\left(x^{2}+y^{2}\right)=2 x+2 y \frac{d y}{d x}=2 x-\frac{2 x y^{2}}{x^{2}+a^{2}}=2 x-\frac{2 x c^{2}}{\left(x^{2}+a^{2}\right)^{2}}$
Then $\frac{d^{2}}{d x^{2}}\left(x^{2}+y^{2}\right)=2-\frac{2 c^{2}}{\left(x^{2}+a^{2}\right)^{4}}\left\{\left(x^{2}+a^{2}\right)^{2}(1)-x(2)\left(x^{2}+\right.\right.$ $\left.\left.a^{2}\right)(2 x)\right\}$
$=2\left\{1-\frac{c^{2}}{\left(x^{2}+a^{2}\right)^{2}}\right\}+\frac{8 c^{2} x^{2}}{\left(x^{2}+a^{2}\right)^{3}}$, as required
(i) Distance from Origin $=x^{2}+y^{2}$

To minimise this distance:
$\frac{d}{d x}\left(x^{2}+y^{2}\right)=0 \Rightarrow 2 x\left\{1-\frac{c^{2}}{\left(x^{2}+a^{2}\right)^{2}}\right\}=0$
$\Rightarrow x=0$ or $x^{2}+a^{2}=c$
But as $c<a^{2}, x^{2}+a^{2}=c$ is not possible; so $x=0$
$\left.\frac{d^{2}}{d x^{2}}\left(x^{2}+y^{2}\right) \right\rvert\,(x=0)=2\left\{1-\frac{c^{2}}{a^{4}}\right\}>0$, as $c<a^{2}$
Thus the distance from the Origin is minimised when $x=0$, and $y^{2} a^{2}=c^{2}$, so that $y= \pm \frac{c}{a}$, as required.

(ii) When $c>a^{2}$, from (1), either $x=0$ or $x^{2}+a^{2}=c$

For $x=0$:
$\left.c>a^{2} \Rightarrow \frac{d^{2}}{d x^{2}}\left(x^{2}+y^{2}\right) \right\rvert\,(x=0)<0 \Rightarrow$ maximum
For $x^{2}+a^{2}=c$:
$\frac{d^{2}}{d x^{2}}\left(x^{2}+y^{2}\right) \left\lvert\,\left(x^{2}+a^{2}=c\right)=0+\frac{8 c^{2}\left(c-a^{2}\right)}{c^{3}}=\frac{8\left(c-a^{2}\right)}{c}>0\right.$, as $c>a^{2}>0$,
so that there is a minimum at $x= \pm \sqrt{c-a^{2}}$,
when $y^{2}=c$, and hence the required points are $\left(\pm \sqrt{c-a^{2}}, \pm \sqrt{c}\right)$

