STEP 2005, Paper 2, Q6 - Solution (3 pages; 11/5/18)
(i) Binomial expansions give:
$(1-x)^{-1}=1+x+x^{2}+\cdots$
$\left[(1-x)^{-1}\right.$ is the sum to infinity of the GP with 1 st term 1 and common ratio x]

General term: x^{r}
$(1-x)^{-2}=1+(-2)(-x)+\frac{(-2)(-3)}{2!}(-x)^{2}+\frac{(-2)(-3)(-4)}{3!}(-x)^{3}+$

General term: $(r+1) x^{r}$

$$
\begin{aligned}
& (1-x)^{-3}=1+(-3)(-x)+\frac{(-3)(-4)}{2!}(-x)^{2}+\frac{(-3)(-4)(-5)}{3!}(-x)^{3} \\
& +\frac{(-3)(-4)(-5)(-6)}{4!}(-x)^{4}+\cdots
\end{aligned}
$$

General term: $\frac{(r+1)(r+2)}{2} x^{r}$

Letting $x=\frac{1}{2}$ (so that $|x|<1$),
$\sum_{n=1}^{\infty} n 2^{-n}=\sum_{r=1}^{\infty} r x^{r}=x \sum_{r=1}^{\infty} r x^{r-1}=x \sum_{R=0}^{\infty}(R+1) x^{R}$
where $R=r-1$

$$
\begin{aligned}
& =x(1-x)^{-2} \\
& =\frac{1}{2}\left(1-\frac{1}{2}\right)^{-2}=\frac{1}{2}(4)=2
\end{aligned}
$$

$\sum_{n=1}^{\infty} n^{2} 2^{-n}=\sum_{n=1}^{\infty} n(n-1) 2^{-n}+\sum_{n=1}^{\infty} n 2^{-n}$
$=\left\{\sum_{r=0}^{\infty}(r+2)(r+1) x^{r+2}\right\}+2$
with $x=\frac{1}{2} \& r+2=n \quad\left(\right.$ since $\sum_{n=1}^{\infty} n(n-1) 2^{-n}=\sum_{n=2}^{\infty} n(n-$ 1) 2^{-n})
$=\left\{x^{2} \sum_{r=0}^{\infty}(r+2)(r+1) x^{r}\right\}+2$
$=\left(\frac{1}{2}\right)^{2}(2)\left(1-\frac{1}{2}\right)^{-3}+2$
$=\frac{1}{2}(8)+2=6$
(ii) The Binomial expansion of $(1-x)^{-\frac{1}{2}}$ is
$1+\left(-\frac{1}{2}\right)(-x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(-x)^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}(-x)^{3}+\cdots$ for $|x|<1$

The general term is $\frac{(1)(3)(5) \ldots(2 r-1)}{2^{r} r!} x^{r}=\frac{(2 r)!}{(2)(4)(6) \ldots(2 r) 2^{r} r!} x^{r}$
$=\frac{(2 r)!}{r!2^{r} .2^{r} r!} x^{r}=\frac{(2 r)!}{(r!)^{2} 2^{2 r}} x^{r}$
so that, replacing r with $n,(1-x)^{-\frac{1}{2}}=\sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2} 2^{2 n}} x^{n}$ for $|x|<$ 1 , as required.
$x=1 / 3$ then gives $(1-1 / 3)^{-\frac{1}{2}}=\sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2} 2^{2 n}} 3^{-n}$
or $\sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2} 2^{2 n} 3^{n}}=\sqrt{\frac{3}{2}}$
To obtain the n in $\sum_{n=1}^{\infty} \frac{n(2 n)!}{(n!)^{2} 2^{2 n} 3^{n}}$, we can first of all differentiate
$(1-x)^{-\frac{1}{2}}=\sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2} 2^{2 n}} x^{n}$ to give
$\left(-\frac{1}{2}\right)(1-x)^{-\frac{3}{2}}(-1)=\sum_{n=1}^{\infty} \frac{n(2 n)!}{(n!)^{2} 2^{2 n}} x^{n-1}$

Then setting $x=1 / 3$ gives $(1 / 2)\left(1-\frac{1}{3}\right)^{-3 / 2}=\sum_{n=1}^{\infty} \frac{n(2 n)!}{(n!)^{2} 2^{2 n} 3^{n-1}}$

Finally, $\sum_{n=1}^{\infty} \frac{n(2 n)!}{(n!)^{2} 2^{2 n} 3^{n}}=\frac{1}{3}\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)^{-\frac{3}{2}}=\frac{1}{6} \sqrt{\frac{27}{8}}=\frac{1}{6}\left(\frac{3}{2}\right) \sqrt{\frac{3}{2}}=\frac{1}{4} \sqrt{\frac{3}{2}}$

