STEP 2005, Paper 2, Q4 - Solutions (4 pages; 11/5/18)

Let
$$\frac{1}{a+b} = tan\theta$$
, $\frac{1}{a+c} = tan\phi$, $\frac{1}{a} = tan\alpha$,

where $\theta, \phi \& \alpha \in (0, \frac{\pi}{2})$, since the range of *arctan* is $(-\frac{\pi}{2}, \frac{\pi}{2})$ and a, b & c are >0, so that $tan\theta, tan\phi \& tan\alpha$ are >0, and hence $\theta, \phi \& \alpha$ are >0

rtp [result to prove]:
$$\theta + \phi = \alpha$$

 $\tan(\theta + \phi) = \tan \alpha \Rightarrow \theta + \phi = \alpha + n\pi$ (for integer *n*) (1)
But $\theta + \phi < \frac{\pi}{2} + \frac{\pi}{2} = \pi$, so that $n \le 0$, from (1), since $\alpha > 0$
[$n = 1$, for example, leads to a contradiction]
whilst $\theta + \phi > 0$, so that $n \ge 0$, from (1), since $\alpha < \pi$
[$n = -1$, for example, leads to a contradiction]
Thus $n = 0$, and we just need to show that $\tan(\theta + \phi) = \tan \alpha$

Now
$$\tan(\theta + \phi) = \frac{\tan\theta + \tan\phi}{1 - \tan\theta \tan\phi} = \frac{\frac{1}{a+b} + \frac{1}{a+c}}{1 - (\frac{1}{a+b})(\frac{1}{a+c})}$$
$$= \frac{(a+c) + (a+b)}{(a+b)(a+c)-1} = \frac{2a+b+c}{a^2 + ac+ab+bc-1} \quad (A)$$

[we want this to be $\frac{1}{a}$, so *a* needs to be a factor of the denominator]

As
$$bc - 1 = a^2$$
 (given),
 $(A) = \frac{2a+b+c}{a^2+ac+ab+a^2} = \frac{2a+b+c}{a(2a+b+c)} = \frac{1}{a}$

[as this is effectively a 'show that' result, we have to be wary of jumping to the answer]

[For the next part, we can expect to do something related to the 1st part. It might be to extend the method to $\tan(\theta + \phi + \beta + \gamma)$, but another use of the 1st part is just to apply its result in the 2nd part (which is simpler - and usually with STEP q'ns it does turn out to be something simple).]

Let a = p + q, b = s & c = t, and apply the result that has just been proved, since $bc = st = (p + q)^2 + 1 = a^2 + 1$, as required.

Thus
$$\arctan\left(\frac{1}{p+q+s}\right) + \arctan\left(\frac{1}{p+q+t}\right) = \arctan\left(\frac{1}{p+q}\right)$$

and, in exactly the same way,

 $\operatorname{arctan}\left(\frac{1}{p+r+u}\right) + \operatorname{arctan}\left(\frac{1}{p+r+v}\right) = \operatorname{arctan}\left(\frac{1}{p+r}\right)$ and $\operatorname{arctan}\left(\frac{1}{p+q}\right) + \operatorname{arctan}\left(\frac{1}{p+r}\right) = \operatorname{arctan}\left(\frac{1}{p}\right),$ so that $\operatorname{arctan}\left(\frac{1}{p+q+s}\right) + \operatorname{arctan}\left(\frac{1}{p+q+t}\right) + \operatorname{arctan}\left(\frac{1}{p+r+u}\right) + \operatorname{arctan}\left(\frac{1}{p+r+v}\right)$ $= \operatorname{arctan}\left(\frac{1}{p+q}\right) + \operatorname{arctan}\left(\frac{1}{p+r}\right) = \operatorname{arctan}\left(\frac{1}{p}\right)$ Then let p = 7

and suppose that

$$q + s = 13 - 7 = 6$$
 (i)
 $q + t = 21 - 7 = 14$ (ii)
 $r + u = 82 - 7 = 75$ (iii)
 $r + v = 187 - 7 = 180$ (iv)
with $st = (7 + q)^2 + 1$ (v)
 $uv = (7 + r)^2 + 1$ (vi)
& $qr = 50$ (vii)

[Note that we have 7 equations in only 6 unknowns, so we will need to ensure that the solutions are consistent with ALL the equations.]

[Also, (i), (ii) & (v) involve just 3 of the unknowns, and similarly for (iii), (iv) & (vi)]

$$q + s = 6 \quad (i)$$

$$q + t = 14 \quad (ii)$$

$$st = (7 + q)^{2} + 1 \quad (v)$$
Eliminating $s \& t$ from (i) & (ii) gives
 $(6 - q)(14 - q) = (7 + q)^{2} + 1$
 $\Rightarrow 84 - 20q = 50 + 14q$
 $\Rightarrow 34q = 34 \Rightarrow q = 1$
so that $s = 6 - 1 = 5 \& t = 14 - 1 = 13$
Also $r + u = 75$ (iii)
 $r + v = 180$ (iv)
 $uv = (7 + r)^{2} + 1$ (vi)
Eliminating $u \& v$ from (iii) & (iv) gives
 $(75 - r)(180 - r) = (7 + r)^{2} + 1$
 $\Rightarrow 13500 - 255r = 50 + 14r$
 $\Rightarrow 269r = 13450$ (C)
Also $qr = 50$ (vii), requiring $r = 50$
As $269 \times 50 = 13450$, (C) is satisfied.
Also $u = 75 - 50 = 25 \& v = 180 - 50 = 130$

Thus, making the substitutions

$$p = 7, q = 1, r = 50, s = 5, t = 13, u = 25, v = 130$$

gives the required result.