STEP 2005, Paper 2, Q4 - Solutions (4 pages; 11/5/18)

Let $\frac{1}{a+b}=\tan \theta, \frac{1}{a+c}=\tan \phi, \frac{1}{a}=\tan \alpha$,
where $\theta, \phi \& \alpha \in\left(0, \frac{\pi}{2}\right)$, since the range of \arctan is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $a, b \& c$ are >0, so that $\tan \theta, \tan \phi \& \tan \alpha$ are >0, and hence $\theta, \phi \& \alpha$ are >0
rtp [result to prove]: $\theta+\phi=\alpha$
$\tan (\theta+\phi)=\tan \alpha \Rightarrow \theta+\phi=\alpha+n \pi$ (for integer n)
But $\theta+\phi<\frac{\pi}{2}+\frac{\pi}{2}=\pi$, so that $n \leq 0$, from (1), since $\alpha>0$
[$n=1$, for example, leads to a contradiction]
whilst $\theta+\phi>0$, so that $n \geq 0$, from (1), since $\alpha<\pi$
[$n=-1$, for example, leads to a contradiction]
Thus $n=0$, and we just need to show that $\tan (\theta+\phi)=\tan \alpha$
Now $\tan (\theta+\phi)=\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}=\frac{\frac{1}{a+b}+\frac{1}{a+c}}{1-\left(\frac{1}{a+b}\right)\left(\frac{1}{a+c}\right)}$
$=\frac{(a+c)+(a+b)}{(a+b)(a+c)-1}=\frac{2 a+b+c}{a^{2}+a c+a b+b c-1}$
[we want this to be $\frac{1}{a}$, so a needs to be a factor of the denominator]

As $b c-1=a^{2}$ (given),
$(A)=\frac{2 a+b+c}{a^{2}+a c+a b+a^{2}}=\frac{2 a+b+c}{a(2 a+b+c)}=\frac{1}{a}$
[as this is effectively a 'show that' result, we have to be wary of jumping to the answer]
[For the next part, we can expect to do something related to the 1 st part. It might be to extend the method to $\tan (\theta+\phi+\beta+\gamma)$, but another use of the 1st part is just to apply its result in the 2nd part (which is simpler - and usually with STEP q'ns it does turn out to be something simple).]

Let $a=p+q, b=s \& c=t$, and apply the result that has just been proved, since $b c=s t=(p+q)^{2}+1=a^{2}+1$, as required.

Thus $\arctan \left(\frac{1}{p+q+s}\right)+\arctan \left(\frac{1}{p+q+t}\right)=\arctan \left(\frac{1}{p+q}\right)$
and, in exactly the same way,
$\arctan \left(\frac{1}{p+r+u}\right)+\arctan \left(\frac{1}{p+r+v}\right)=\arctan \left(\frac{1}{p+r}\right)$
and $\arctan \left(\frac{1}{p+q}\right)+\arctan \left(\frac{1}{p+r}\right)=\arctan \left(\frac{1}{p}\right)$,
so that $\arctan \left(\frac{1}{p+q+s}\right)+\arctan \left(\frac{1}{p+q+t}\right)+\arctan \left(\frac{1}{p+r+u}\right)+$ $\arctan \left(\frac{1}{p+r+v}\right)$
$=\arctan \left(\frac{1}{p+q}\right)+\arctan \left(\frac{1}{p+r}\right)=\arctan \left(\frac{1}{p}\right)$
Then let $p=7$
and suppose that

$$
\begin{align*}
& q+s=13-7=6 \tag{i}\\
& q+t=21-7=14 \tag{ii}\\
& r+u=82-7=75 \tag{iii}\\
& r+v=187-7=180 \tag{iv}\\
& \text { with } s t=(7+q)^{2}+1 \\
& u v=(7+r)^{2}+1 \\
& \& q r=50(\mathrm{ivi})
\end{align*}
$$

[Note that we have 7 equations in only 6 unknowns, so we will need to ensure that the solutions are consistent with ALL the equations.]
[Also, (i), (ii) \& (v) involve just 3 of the unknowns, and similarly for (iii), (iv) \& (vi)]
$q+s=6$
$q+t=14$
$s t=(7+q)^{2}+1(\mathrm{v})$
Eliminating $s \& t$ from (i) \& (ii) gives
$(6-q)(14-q)=(7+q)^{2}+1$
$\Rightarrow 84-20 q=50+14 q$
$\Rightarrow 34 q=34 \Rightarrow q=1$
so that $s=6-1=5 \& t=14-1=13$
Also $r+u=75$ (iii)
$r+v=180$ (iv)
$u v=(7+r)^{2}+1(\mathrm{vi})$
Eliminating $u \& v$ from (iii) \& (iv) gives
$(75-r)(180-r)=(7+r)^{2}+1$
$\Rightarrow 13500-255 r=50+14 r$
$\Rightarrow 269 r=13450$ (C)
Also $q r=50$ (vii), requiring $r=50$
As $269 \times 50=13450,(\mathrm{C})$ is satisfied.
Also $u=75-50=25 \& v=180-50=130$

Thus, making the substitutions

$$
p=7, q=1, r=50, s=5, t=13, u=25, v=130
$$

gives the required result.

