STEP 2005, Paper 2, Q10 - Solution (2 pages; 11/5/18)
Let the missiles collide at time t from the launch of A.
The position vectors of the two missiles, relative to A, can be equated at time t :

$$
\begin{aligned}
& \binom{100 \cos \alpha \cdot t}{100 \sin \alpha \cdot t-1 / 2(10) t^{2}}= \\
& \binom{180-200 \cos \beta(t-T)}{200 \sin \beta(t-T)-1 / 2(10)(t-T)^{2}}
\end{aligned}
$$

where $\alpha \& \beta$ are the angles of elevation at $\mathrm{A} \& \mathrm{~B}$ respectively, so that $\cos \alpha=\frac{4}{5}, \sin \alpha=\frac{3}{5}, \cos \beta=\frac{3}{5} \& \sin \beta=\frac{4}{5}$
Thus, $80 t=180-120(t-T)(1)$
\& $60 t-5 t^{2}=160(t-T)-5(t-T)^{2}$
Then $(1) \Rightarrow 200 t=180+120 T \Rightarrow t=\frac{9+6 T}{10} \& t-T=\frac{9-4 T}{10}$
Substituting into (2) then gives

$$
\begin{aligned}
& 60\left(\frac{9+6 T}{10}\right)-5\left(\frac{9+6 T}{10}\right)^{2}=160\left(\frac{9-4 T}{10}\right)-5\left(\frac{9-4 T}{10}\right)^{2} \\
& \Rightarrow 600(9+6 T)-5\left(81+108 T+36 T^{2}\right) \\
& =1600(9-4 T)-5\left(81-72 T+16 T^{2}\right) \\
& \Rightarrow 120(9+6 T)-\left(81+108 T+36 T^{2}\right) \\
& =320(9-4 T)-\left(81-72 T+16 T^{2}\right) \\
& \Rightarrow T^{2}(-36+16)+T(720-108+1280-72)+1080-2880= \\
& 0 \\
& \Rightarrow T^{2}(-20)+T(2000-180)-1800=0 \\
& \Rightarrow T^{2}-T(100-9)+90=0 \\
& \Rightarrow T^{2}-91 T+90=0
\end{aligned}
$$

$\Rightarrow(T-90)(T-1)=0$
$\Rightarrow T=90$ or 1
As $t=\frac{9+6 T}{10}$, the corresponding values of t are 54.9 and 1.5
Thus $T=90$ leads to the contradiction that the collision occurs before the 2nd missile is launched. When $T=1$, the collision takes place 0.5 seconds after the 2 nd missile is launched, and this is the correct answer. To explain what is going on when $T=90$, see the diagram below (not to scale), which shows the intersection of two quadratic curves. P corresponds to the situation when $T=1$ (assuming of course that the missiles are able to meet at P), whilst Q corresponds to $T=90$: as Q is to the right of P , it represents a time before the launch of the 2nd missile.

