STEP 2005, Paper 1, Q4 - Solution (4 pages; 9/5/18)

(a) The diagram below shows the two values of θ in the range 0 to 2π for which $\cos \theta=\frac{3}{5}$ [note that, from the $3,4,5$ triangle, the smaller θ is $>\frac{\pi}{4}$ (just for the purpose of sketching]. For these two values, $\sin \theta=\frac{4}{5} \&$ $-\frac{4}{5}$, respectively (from the $3,4,5$ triangle; or $\cos ^{2} \theta+\sin ^{2} \theta=1$) So, as $\frac{3 \pi}{2} \leq \theta \leq 2 \pi, \sin 2 \theta=2 \sin \theta \cos \theta=2\left(-\frac{4}{5}\right)\left(\frac{3}{5}\right)=-\frac{24}{25}$

$\cos 3 \theta=\cos (2 \theta+\theta)=\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta$
Now $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=\frac{9}{25}-\frac{16}{25}=-\frac{7}{25}$
So $\cos 3 \theta=\left(-\frac{7}{25}\right)\left(\frac{3}{5}\right)-\left(-\frac{24}{25}\right)\left(-\frac{4}{5}\right)=\frac{-21-96}{125}=-\frac{117}{125}$
(b) $\tan 3 \theta=\tan (2 \theta+\theta)=\frac{\tan 2 \theta+\tan \theta}{1-\tan 2 \theta \tan \theta}=\frac{\frac{2 \tan \theta}{1-\tan ^{2} \theta}+\tan \theta}{1-\frac{2 \tan \theta}{1-\tan ^{2} \theta} \cdot \tan \theta}$
$=\frac{2 \tan \theta+\left(\tan \theta-\tan ^{3} \theta\right)}{\left(1-\tan ^{2} \theta\right)-2 \tan ^{2} \theta}=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$
Hence $\tan 3 \theta=\frac{11}{2} \Rightarrow \frac{11}{2}-\frac{33}{2} \tan ^{2} \theta=3 \tan \theta-\tan ^{3} \theta$.
Writing $x=\tan \theta, f(x)($ say $)=2 x^{3}-33 x^{2}-6 x+11=0$
We have to find a root $\geq \tan \left(\frac{\pi}{4}\right)=1$
The question is: does this cubic factorise easily?
We can try applying the factor theorem, but unfortunately this doesn't yield any integer roots. At this point you could be forgiven for wondering if a mistake had been made somewhere.

In fact the cubic has a factor of $2 x-1$. However there are a few other possibilities (assuming of course that a convenient factorisation does in fact exist). The full list is:
(1) $(x+1)\left(2 x^{2}+a x+11\right)$
$(2)(x-1)\left(2 x^{2}+a x-11\right)$
(3) $(x+11)\left(2 x^{2}+a x+1\right)$
$(4)(x-11)\left(2 x^{2}+a x-1\right)$
$(5)(2 x+1)\left(x^{2}+a x+11\right)$
(6) $(2 x-1)\left(x^{2}+a x-11\right)$
(7) $(2 x+11)\left(x^{2}+a x+1\right)$
(8) $(2 x-11)\left(x^{2}+a x-1\right)$
(1) \& (2) will have already been eliminated by the Factor theorem. It doesn't take that long to establish whether a consistent value can be found for a in each of the other cases (by equating coefficients), but the process seems a bit pedestrian for a STEP question.

We could attempt a sketch by considering the location of the turning points.
$\frac{d y}{d x}=6 x^{2}-66 x-6$
Then $\frac{d y}{d x}=0 \Rightarrow x^{2}-11 x-1=0$
$\Rightarrow x=\frac{11 \pm \sqrt{125}}{2}$; ie just over 11 and just less than 0
Because the coefficient of x^{3} is positive, the general shape of $f(x)$ indicates that the maximum will be at just less than 0 , whilst the minimim will be at just over 11.

Also, $f(0)=11 \& f(1)=-26$, so that there is a root between $0 \& 1$ (since $f(x)$ is continuous).

Hence we can deduce that there are 3 roots, with the following positions:
<0, between $0 \& 1$, and >11

[For any cubic, there will be a point of inflexion halfway between the turning points (if they exist), with the curve having rotational symmetry of order 2 about the point of inflexion.]

From this we can eliminate (4) \& (8), but this still leaves 4 options to investigate.

We find that only $2 x^{3}-33 x^{2}-6 x+11=(2 x-1)\left(x^{2}+a x-11\right)$ gives a consistent value for a :

Equating coefficients of $x^{2}:-33=2 a-1 \Rightarrow a=-16$
Equating coefficients of $x:-6=-22-a \Rightarrow a=-16$
So one root is $\frac{1}{2}$ (the one we were expecting between $0 \& 1$). We are trying to find the root that is ≥ 1, so we want the positive root of $x^{2}-16 x-11=$ $0 ;$ namely $\frac{16+\sqrt{16^{2}+44}}{2}=8+\sqrt{64+11}=8+\sqrt{75}$
[Note that it wasn't necessary to work out 16^{2}]
[As a check, the negative root, $8-\sqrt{75}$ is clearly less than $\frac{11-\sqrt{125}}{2}$, the position of the maximum - as expected.]

