0

STEP 2005, Paper 1, Q3 - Solution (2 pages; 9/5/18)

[The phrases "two distinct real solutions" and "exactly one real solution" virtually guarantee that only a quadratic equation is involved - making this question very attractive (especially as all the parts are of the 'show that' type).]

(i)
$$\frac{x}{x-a} + \frac{x}{x-b} = 1 \Rightarrow x(x-b) + x(x-a) = (x-a)(x-b)$$

[$x \neq a \text{ or } b$ for the original equation to make sense]
 $\Rightarrow x^2 + x(-b-a+a+b) - ab = 0$
 $\Rightarrow x^2 = ab$
As $a \& b$ are either both +ve or both -ve (and real), $ab > 0$
Hence the two roots $x = \sqrt{ab} \& -\sqrt{ab}$ are real and distinct.
(ii) $\frac{x}{x-a} + \frac{x}{x-b} = 1 + c \Rightarrow x(x-b) + x(x-a) = (1+c)(x-a)(x-b)$
 $\Rightarrow x^2(2-[1+c]) + x(-b-a+(a+b)(1+c)) - (1+c)ab = a$
 $\Rightarrow (1-c)x^2 + c(a+b)x - (1+c)ab = 0$

Exactly one real root $\Leftrightarrow \Delta = 0$

[The symbol Δ for the discriminant tends not to be used in A level textbooks (perhaps because it might encourage students to confuse 'discriminant' with 'determinant', which has the same symbol!)]

so that
$$c^{2}(a+b)^{2} + 4(1-c)(1+c)ab = 0$$

 $\Leftrightarrow c^{2}(a+b)^{2} + 4ab(1-c^{2}) = 0$
 $\Leftrightarrow c^{2}(a-b)^{2} + 4ab = 0$

$$\Leftrightarrow c^{2} = \frac{-4ab}{(a-b)^{2}} \quad (1)$$

$$1 - \left(\frac{a+b}{a-b}\right)^{2} = \frac{1}{(a-b)^{2}} \left((a-b)^{2} - (a+b)^{2}\right)$$

$$= \frac{-4ab}{(a-b)^{2}} \quad [\text{as this is a 'show that' result, you might want to}$$
deliberately give more working in the exam], so that $c^{2} = \frac{-4ab}{(a-b)^{2}} \Leftrightarrow c^{2} = 1 - \left(\frac{a+b}{a-b}\right)^{2}$
As $a \& b$ are real, $\left(\frac{a+b}{a-b}\right)^{2} \ge 0$, so that $c^{2} \le 1$
Again, as $a \& b$ are real, $c^{2} \ge 0$

[At this point, we could show very easily that $c^2 > 0$ from $c^2 = \frac{-4ab}{(a-b)^2}$, since a & b are non-zero (2); however, it isn't clear whether the instruction 'deduce' applies to every aspect of the last part. I would have thought that (2) was acceptable, but the Official sol'ns don't do it this way.]

Suppose that
$$c^2 = 0$$
, so that $\left(\frac{a+b}{a-b}\right)^2 = 1$
Then $\frac{a+b}{a-b} = 1$ or -1 ,

so that either $a + b = a - b \Rightarrow b = -b \Rightarrow b = 0$ (contradiction)

or $a + b = b - a \Rightarrow a = -a \Rightarrow a = 0$ (contradiction)

Thus $c^2 \neq 0$, and so $0 < c^2 \leq 1$, as required.

[Note that we have only proved that this is a necessary condition for

 $c^2 = \frac{-4ab}{(a-b)^2}$ to hold; not (necessarily!) a sufficient condition. There could conceivably be values of c^2 in the range (0,1] for which the result was not true.]