STEP 2005, Paper 1, Q3 - Solution (2 pages; 9/5/18)
[The phrases "two distinct real solutions" and "exactly one real solution" virtually guarantee that only a quadratic equation is involved - making this question very attractive (especially as all the parts are of the 'show that' type).]
(i) $\frac{x}{x-a}+\frac{x}{x-b}=1 \Rightarrow x(x-b)+x(x-a)=(x-a)(x-b)$
$[x \neq a$ or b for the original equation to make sense]
$\Rightarrow x^{2}+x(-b-a+a+b)-a b=0$
$\Rightarrow x^{2}=a b$
As $a \& b$ are either both + ve or both -ve (and real), $a b>0$ Hence the two roots $x=\sqrt{a b} \&-\sqrt{a b}$ are real and distinct.
(ii) $\frac{x}{x-a}+\frac{x}{x-b}=1+c \Rightarrow x(x-b)+x(x-a)=(1+c)(x-$ a) $(x-b)$
$\Rightarrow x^{2}(2-[1+c])+x(-b-a+(a+b)(1+c))-(1+c) a b=0$
$\Rightarrow(1-c) x^{2}+c(a+b) x-(1+c) a b=0$
Exactly one real root $\Leftrightarrow \Delta=0$
[The symbol Δ for the discriminant tends not to be used in A level textbooks (perhaps because it might encourage students to confuse 'discriminant' with 'determinant', which has the same symbol!)]
so that $c^{2}(a+b)^{2}+4(1-c)(1+c) a b=0$
$\Leftrightarrow c^{2}(a+b)^{2}+4 a b\left(1-c^{2}\right)=0$
$\Leftrightarrow c^{2}(a-b)^{2}+4 a b=0$
$\Leftrightarrow c^{2}=\frac{-4 a b}{(a-b)^{2}}$
$1-\left(\frac{a+b}{a-b}\right)^{2}=\frac{1}{(a-b)^{2}}\left((a-b)^{2}-(a+b)^{2}\right)$
$=\frac{-4 a b}{(a-b)^{2}} \quad$ [as this is a 'show that' result, you might want to deliberately give more working in the exam], so that $c^{2}=$
$\frac{-4 a b}{(a-b)^{2}} \Leftrightarrow c^{2}=1-\left(\frac{a+b}{a-b}\right)^{2}$
As $a \& b$ are real, $\left(\frac{a+b}{a-b}\right)^{2} \geq 0$, so that $c^{2} \leq 1$
Again, as $a \& b$ are real, $c^{2} \geq 0$
[At this point, we could show very easily that $c^{2}>0$ from $c^{2}=$ $\frac{-4 a b}{(a-b)^{2}}$, since $a \& b$ are non-zero (2); however, it isn't clear whether the instruction 'deduce' applies to every aspect of the last part. I would have thought that (2) was acceptable, but the Official sol'ns don't do it this way.]

Suppose that $c^{2}=0$, so that $\left(\frac{a+b}{a-b}\right)^{2}=1$
Then $\frac{a+b}{a-b}=1$ or -1 ,
so that either $a+b=a-b \Rightarrow b=-b \Rightarrow b=0$ (contradiction)
or $a+b=b-a \Rightarrow a=-a \Rightarrow a=0$ (contradiction)
Thus $c^{2} \neq 0$, and so $0<c^{2} \leq 1$, as required.
[Note that we have only proved that this is a necessary condition for
$c^{2}=\frac{-4 a b}{(a-b)^{2}}$ to hold; not (necessarily!) a sufficient condition.
There could conceivably be values of c^{2} in the range $(0,1]$ for which the result was not true.]

