STEP 2005, Paper 1, Q1 Solution (2 pages; 9/5/18)
(i) A 'case by case' approach can be adopted here. We could, for example, consider the different possibilities for the 1st digit:

79999: 1 rearrangement of 9999
89998: 4 rearrangements of 9998
99997: 4 rearrangements of 9997
99988: ${ }^{4} C_{2}=6$ rearrangements of 9988
giving a total of 15
Alternatively, we could categorise the numbers according to the number of 9 s :

4 9s: 99997: 5 rearrangements
$39 \mathrm{~s}: 99988: \frac{5!}{3!2!}=10$ rearrangements
again, giving a total of 15
(ii) The 2nd approach in (i) seems to be shorter:

49s: 99993: 5 rearrangements
3 9s: 99984/99975/99966:
$\frac{5!}{3!}+\frac{5!}{3!}+\frac{5!}{3!2!}=20+20+10=50$ rearrangements
29 s : 99885/99876/99777 (we can consider the number of 8s here)
$\frac{5!}{2!2!}+\frac{5!}{2!}+\frac{5!}{2!3!}=30+60+10=100$ rearrangements
19 : 98886/98877 (again, considering the number of 8s)
$\frac{5!}{3!}+\frac{5!}{2!2!}=20+30=50$ rearrangements
0 9s: 88887: 5 rearrangements
giving a total of $5+50+100+50+5=210$ rearrangements

