STEP 2005, Paper 1, Q11 - Solution (3 pages; 9/5/18)

[Note that the sketch in (iv) is likely to be fairly time-consuming.]
(i) $\sin 2 t=2 \operatorname{sintcos} t=0 \& 2 \cos t=0 \Rightarrow \cos t=0 \Rightarrow t=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$
(ii) [It's probably a good idea to use \underline{v} instead of $\underline{\underline{r}}$, as the dot might get overlooked (either by yourself or the examiner).]
$\underline{v}=2 \cos 2 t \underline{i}-2 \sin t \underline{j}$
velocity is perpendicular to displacement when $\underline{r} \cdot \underline{v}=0$, provided that \underline{r} and \underline{v} are not zero [this seems to have been overlooked in the official sol'ns; normally they're quite particular about this sort of refinement]
$\underline{r} . \underline{v}=0 \Rightarrow 2 \sin 2 t \cos 2 t-4 \sin t \cos t=0$
$\Rightarrow \operatorname{sintcostcos} 2 t-\operatorname{sintcos} t=0$
\Rightarrow either $\sin t=0$ or $\cos t=0$ or $\cos 2 t=1$
$\Rightarrow t=0, \pi, \frac{\pi}{2}$ or $\frac{3 \pi}{2}$
but the particle is at the Origin at $t=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$; ie its displacement vector is $\underline{0}$, so it doesn't make sense to talk about the velocity being perpendicular to it; so we are left with $t=0$ or π.
(iii) \underline{v} parallel to $\underline{r} \Rightarrow \frac{2 \cos 2 t}{\sin 2 t}=\frac{-2 \sin t}{2 \cos t}$ (1), provided that $\sin 2 t \& \cos t \neq 0$ As particle is not at 0, cost $\neq 0$

If $\sin 2 t=0$ \& cost $\neq 0$, then $\sin t=0$, so that $t=0$ or π
$t=0 \Rightarrow \underline{r}=2 \underline{j} \& \underline{v}=2 \underline{i}$, so that $\underline{r} \& \underline{v}$ are not parallel
$t=\pi \Rightarrow \underline{r}=-2 \underline{j} \& \underline{v}=2 \underline{i}$, so that again $\underline{r} \& \underline{v}$ are not parallel
Then (1) $\Rightarrow 2 \cos 2 t \cos t=-\operatorname{sint}(2 \operatorname{sintcos} t)$
$\Rightarrow \cos 2 t+\sin ^{2} t=0($ as cost $\neq 0)$
$\Rightarrow\left(\cos ^{2} t-\sin ^{2} t\right)+\sin ^{2} t=0$
$\Rightarrow \cos ^{2} t=0$
\Rightarrow cost $=0$
But cost $\neq 0$, so that there are no situations when \underline{v} is parallel to \underline{r}.
(iv) $|\underline{r}|^{2}=\sin ^{2}(2 t)+4 \cos ^{2} t=4 \sin ^{2} t \cos ^{2} t+4 \cos ^{2} t$
$=4\left(1-\cos ^{2} t\right) \cos ^{2} t+4 \cos ^{2} t$
$=8 \cos ^{2} t-4 \cos ^{4} t$
$\frac{d}{d t}\left(8 \cos ^{2} t-4 \cos ^{4} t\right)=0$
$\Rightarrow-16 \cos t \sin t+16 \cos ^{3} t \sin t=0$
$\Rightarrow \sin t=0(A), \cos t=0(B)$ or $\cos ^{2} t=1(C)$
$(A) \Rightarrow|\underline{r}|^{2}=4$
$(B) \Rightarrow|\underline{r}|^{2}=0$
(C) $\Rightarrow t=0$ or π
$t=0 \Rightarrow|\underline{r}|^{2}=4 \quad \& \quad t=\pi \Rightarrow|\underline{r}|^{2}=4$ also
So the max. distance is 2
[A fairly safe way of sketching the curve is to establish $\underline{r} \& \underline{v}$ at intervals of $\frac{\pi}{4}$ for t, and draw arrows to represent the direction of motion (ie the direction of \underline{v}). As it's a bit time-consuming, you might want to save this for the end of the exam, when corners can be cut if necessary.]

[(1) is $t=0$, (2) is $t=\frac{\pi}{4}$ etc; (9) would be $t=2 \pi$, which is equivalent to $t=0$; since cost has a period of 2π and $\sin 2 t$ has a period of π (being $\sin t$ stretched by a scale factor of $\frac{1}{2}$)]

