Roots of Polynomial Equations (6 pages; 15/2/17)

(1) Quadratic equations

If $ax^2 + bx + c$ can be factorised as $a(x - \alpha)(x - \beta)$, or if $ax^2 + bx + c = 0$ has roots α and β then $ax^2 + bx + c = ax^2 - a(\alpha + \beta)x + a\alpha\beta$ $\Rightarrow \alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$ (equating coefficients)

Note: This is true for complex roots as well, and also where the coefficients of the equation are complex.

Example 1

If the equation $2x^2 + 5x - 9 = 0$ has roots α and β , find the quadratic equation which has roots $\alpha + 2$ and $\beta + 2$.

Method 1

We know that $\alpha + \beta = -\frac{5}{2}$ and $\alpha\beta = -\frac{9}{2}$ Suppose that the equation we are looking for is $x^2 + bx + c = 0$ Then $(\alpha + 2) + (\beta + 2) = -b$ and $(\alpha + 2)(\beta + 2) = c$ Hence $b = \frac{5}{2} - 4 = -\frac{3}{2}$ and $c = \alpha\beta + 2\alpha + 2\beta + 4 = -\frac{9}{2} + 2(-\frac{5}{2}) + 4 = -\frac{11}{2}$ and so the required equation is $x^2 - \frac{3x}{2} - \frac{11}{2} = 0$ or $2x^2 - 3x - 11 = 0$

Method 2 (substitution)

Let u = x + 2Then x = u - 2 and $2x^2 + 5x - 9 = 0 \Leftrightarrow 2(u - 2)^2 + 5(u - 2) - 9 = 0$ LHS equation $\Leftrightarrow x = \alpha \text{ or } \beta \Leftrightarrow u = \alpha + 2 \text{ or } \beta + 2$ So the RHS equation $\Leftrightarrow u = \alpha + 2 \text{ or } \beta + 2$ (because the two equations are equivalent). The RHS equation can be simplified to $2u^2 - 3u - 11 = 0$

Example 2

If the equation $2x^2 + 5x - 9 = 0$ has roots α and β , find the quadratic equation which has roots $\alpha^2 + 1$ and $\beta^2 + 1$, by two methods.

Method 1

 $\alpha + \beta = -\frac{5}{2} \text{ and } \alpha\beta = -\frac{9}{2}$ Let the new equation be $x^2 + bx + c = 0$ Then $\alpha^2 + 1 + \beta^2 + 1 = -b$ and $(\alpha^2 + 1)(\beta^2 + 1) = c$ Now $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \frac{25}{4} + 9$ So $b = -(\frac{25}{4} + 11)$ and $c = (\alpha\beta)^2 + (\alpha^2 + \beta^2) + 1 = \frac{81}{4} + \frac{25}{4} + 10$ Thus the new equation is $4x^2 - 69x + 146 = 0$

Alternative method of finding $\alpha^2 + \beta^2$: As $2\alpha^2 + 5\alpha - 9 = 0$ and $2\beta^2 + 5\beta - 9 = 0$, $2(\alpha^{2} + \beta^{2}) + 5(\alpha + \beta) - 18 = 0,$ so that $2(\alpha^{2} + \beta^{2}) + 5\left(-\frac{5}{2}\right) - 18 = 0$ and $\alpha^{2} + \beta^{2} = \frac{1}{2}(18 + \frac{25}{2})$ etc

Method 2

Let $u = x^2 + 1$, so that $x = \pm \sqrt{u - 1}$ Then $2(u - 1) \pm 5\sqrt{u - 1} - 9 = 0$ so that $\pm 5\sqrt{u - 1} = 11 - 2u$ and $25(u - 1) = 121 - 44u + 4u^2$ and hence $4u^2 - 69u + 146 = 0$

Useful result

$$(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$$
$$= \alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta)$$
so that $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$

(2) Cubic Equations

Similarly to the quadratic case, if $ax^3 + bx^2 + cx + d$ can be factorised as $a(x - \alpha)(x - \beta)(x - \gamma)$,

or if $ax^3 + bx^2 + cx + d = 0$ has roots α, β and γ then $\alpha + \beta + \gamma = -\frac{b}{a}$, $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a} \& \alpha\beta\gamma = -\frac{d}{a}$

Example

If the roots of the equation $x^3 - 2x^2 + 5x + 3 = 0$ are

 α , $\beta \& \gamma$, find the equation with roots α^2 , $\beta^2 \& \gamma^2$

Solution

$$\alpha + \beta + \gamma = 2$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = 5$$

$$\alpha\beta\gamma = -3$$

and $(\alpha + \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \alpha\gamma + \beta\gamma)$
We need to find $\alpha^2 + \beta^2 + \gamma^2$, $\alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2$ and $\alpha^2\beta^2\gamma^2$
 $\alpha^2 + \beta^2 + \gamma^2 = 2^2 - 2(5) = -6$ and $\alpha^2\beta^2\gamma^2 = (-3)^2 = 9$

Consider
$$(\alpha\beta + \alpha\gamma + \beta\gamma)^2 = \alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2 + 2(\alpha^2\beta\gamma + \alpha\beta^2\gamma + \alpha\beta\gamma^2)$$

= $\alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2 + 2\alpha\beta\gamma(\alpha + \beta + \gamma)$

So
$$\alpha^2 \beta^2 + \alpha^2 \gamma^2 + \beta^2 \gamma^2 = 5^2 - 2(-3)(2) = 37$$

Hence the equation is $x^3 + 6x^2 + 37x - 9 = 0$ [Note that the substitution method doesn't work here.]

(3) Higher order polynomials

If $ax^4 + bx^3 + cx^2 + dx + e = 0$ has roots α, β, γ and δ then $\alpha + \beta + \gamma + \delta = -\frac{b}{a}$, $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = \frac{c}{a}$ $\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = -\frac{d}{a}$ and $\alpha\beta\gamma\delta = \frac{e}{a}$ These results are often written as

$$\sum \alpha = -\frac{b}{a}$$
, $\sum \alpha \beta = \frac{c}{a}$, $\sum \alpha \beta \gamma = -\frac{d}{a}$, $\alpha \beta \gamma \delta = \frac{e}{a}$

(4) Complex Roots

(i) A cubic curve with real coefficients must intersect the *x*-axis either once or 3 times (if repeated roots are counted as 2 roots), so that there will be either one or 3 real roots.

Example

Find the roots of the equation $x^3 - x^2 + 8x + 10 = 0$

Solution

Let $f(x) = x^3 - x^2 + 8x + 10$ f(1) = 18, f(-1) = 0; so x = -1 is one root Then $x^3 - x^2 + 8x + 10 = (x + 1)(x^2 + kx + 10)$ Equating coefficients of $x^2: -1 = 1 + k$, so that k = -2The remaining roots are $\frac{2 \pm \sqrt{4-40}}{2} = 1 \pm 3i$

(ii) Conjugate roots

If the coefficients of a polynomial are real, then any complex roots will come in conjugate pairs.

Consider $f(x) = ax^3 + bx^2 + cx + d = 0$ If z = x + yi is a root, so that $f(z) = a(x + yi)^3 + b(x + yi)^2 + (cx + yi) + d = 0 + 0i$ Then $a(x - yi)^3 + b(x - yi)^2 + (cx - yi) + d$ = Re(f(z)) - Im(f(z))i = 0 - 0i[as *i* is being replaced with -i] So the complex conjugate is also a root

So the complex conjugate is also a root.

Example

If 2 + i is a root of the equation $x^3 - 7x^2 + 17x - 15 = 0$, find the remaining roots.

Solution

2 - i is also a root

Then, if α is the other root,

 $(2 + i) + (2 - i) + \alpha = 7$, so that $\alpha = 3$