Roots of Polynomial Equations (6 pages; 15/2/17)

(1) Quadratic equations

If $a x^{2}+b x+c$ can be factorised as $a(x-\alpha)(x-\beta)$,
or if $a x^{2}+b x+c=0$ has roots α and β then $a x^{2}+b x+c=a x^{2}-a(\alpha+\beta) x+a \alpha \beta$
$\Rightarrow \alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a} \quad$ (equating coefficients)

Note: This is true for complex roots as well, and also where the coefficients of the equation are complex.

Example 1

If the equation $2 x^{2}+5 x-9=0$ has roots α and β, find the quadratic equation which has roots $\alpha+2$ and $\beta+2$.

Method 1

We know that $\alpha+\beta=-\frac{5}{2}$ and $\alpha \beta=-\frac{9}{2}$
Suppose that the equation we are looking for is $x^{2}+b x+c=0$
Then $(\alpha+2)+(\beta+2)=-b$ and $(\alpha+2)(\beta+2)=c$
Hence $b=\frac{5}{2}-4=-\frac{3}{2}$ and
$c=\alpha \beta+2 \alpha+2 \beta+4=-\frac{9}{2}+2\left(-\frac{5}{2}\right)+4=-\frac{11}{2}$
and so the required equation is $x^{2}-\frac{3 x}{2}-\frac{11}{2}=0$
or $2 x^{2}-3 x-11=0$

Method 2 (substitution)

Let $u=x+2$
Then $x=u-2$ and
$2 x^{2}+5 x-9=0 \Leftrightarrow 2(u-2)^{2}+5(u-2)-9=0$
LHS equation $\Leftrightarrow x=\alpha$ or $\beta \Leftrightarrow u=\alpha+2$ or $\beta+2$
So the RHS equation $\Leftrightarrow u=\alpha+2$ or $\beta+2$
(because the two equations are equivalent).
The RHS equation can be simplified to $2 u^{2}-3 u-11=0$

Example 2

If the equation $2 x^{2}+5 x-9=0$ has roots α and β, find the quadratic equation which has roots $\alpha^{2}+1$ and $\beta^{2}+1$, by two methods.

Method 1

$\alpha+\beta=-\frac{5}{2}$ and $\alpha \beta=-\frac{9}{2}$
Let the new equation be $x^{2}+b x+c=0$
Then $\alpha^{2}+1+\beta^{2}+1=-b$ and $\left(\alpha^{2}+1\right)\left(\beta^{2}+1\right)=c$
Now $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=\frac{25}{4}+9$
So $b=-\left(\frac{25}{4}+11\right)$
and $c=(\alpha \beta)^{2}+\left(\alpha^{2}+\beta^{2}\right)+1=\frac{81}{4}+\frac{25}{4}+10$
Thus the new equation is $4 x^{2}-69 x+146=0$

Alternative method of finding $\alpha^{2}+\beta^{2}$:
As $2 \alpha^{2}+5 \alpha-9=0$ and $2 \beta^{2}+5 \beta-9=0$,
$2\left(\alpha^{2}+\beta^{2}\right)+5(\alpha+\beta)-18=0$,
so that $2\left(\alpha^{2}+\beta^{2}\right)+5\left(-\frac{5}{2}\right)-18=0$
and $\alpha^{2}+\beta^{2}=\frac{1}{2}\left(18+\frac{25}{2}\right)$ etc

Method 2

Let $u=x^{2}+1$, so that $x= \pm \sqrt{u-1}$
Then $2(u-1) \pm 5 \sqrt{u-1}-9=0$
so that $\pm 5 \sqrt{u-1}=11-2 u$
and $25(u-1)=121-44 u+4 u^{2}$
and hence $4 u^{2}-69 u+146=0$

Useful result

$(\alpha+\beta)^{3}=\alpha^{3}+3 \alpha^{2} \beta+3 \alpha \beta^{2}+\beta^{3}$
$=\alpha^{3}+\beta^{3}+3 \alpha \beta(\alpha+\beta)$
so that $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$

(2) Cubic Equations

Similarly to the quadratic case, if $a x^{3}+b x^{2}+c x+d$ can be factorised as $a(x-\alpha)(x-\beta)(x-\gamma)$,
or if $a x^{3}+b x^{2}+c x+d=0$ has roots α, β and γ
then $\alpha+\beta+\gamma=-\frac{b}{a}, \quad \alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a} \& \alpha \beta \gamma=-\frac{d}{a}$

Example

If the roots of the equation $x^{3}-2 x^{2}+5 x+3=0$ are $\alpha, \beta \& \gamma$, find the equation with roots $\alpha^{2}, \beta^{2} \& \gamma^{2}$

Solution

$\alpha+\beta+\gamma=2$
$\alpha \beta+\alpha \gamma+\beta \gamma=5$
$\alpha \beta \gamma=-3$
and $(\alpha+\beta+\gamma)^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}+2(\alpha \beta+\alpha \gamma+\beta \gamma)$
We need to find $\alpha^{2}+\beta^{2}+\gamma^{2}, \alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}$ and $\alpha^{2} \beta^{2} \gamma^{2}$
$\alpha^{2}+\beta^{2}+\gamma^{2}=2^{2}-2(5)=-6$ and $\alpha^{2} \beta^{2} \gamma^{2}=(-3)^{2}=9$

Consider $(\alpha \beta+\alpha \gamma+\beta \gamma)^{2}=\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}+2\left(\alpha^{2} \beta \gamma+\right.$ $\left.\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}\right)$
$=\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}+2 \alpha \beta \gamma(\alpha+\beta+\gamma)$

So $\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}=5^{2}-2(-3)(2)=37$

Hence the equation is $x^{3}+6 x^{2}+37 x-9=0$
[Note that the substitution method doesn't work here.]

(3) Higher order polynomials

If $a x^{4}+b x^{3}+c x^{2}+d x+e=0$ has roots α, β, γ and δ
then $\alpha+\beta+\gamma+\delta=-\frac{b}{a}, \quad \alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta=\frac{c}{a}$
$\alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta=-\frac{d}{a}$ and $\alpha \beta \gamma \delta=\frac{e}{a}$
These results are often written as
$\sum \alpha=-\frac{b}{a} \quad, \quad \sum \alpha \beta=\frac{c}{a} \quad, \sum \alpha \beta \gamma=-\frac{d}{a}, \alpha \beta \gamma \delta=\frac{e}{a}$

(4) Complex Roots

(i) A cubic curve with real coefficients must intersect the x-axis either once or 3 times (if repeated roots are counted as 2 roots), so that there will be either one or 3 real roots.

Example

Find the roots of the equation $x^{3}-x^{2}+8 x+10=0$

Solution

Let $f(x)=x^{3}-x^{2}+8 x+10$
$f(1)=18, f(-1)=0$; so $x=-1$ is one root
Then $x^{3}-x^{2}+8 x+10=(x+1)\left(x^{2}+k x+10\right)$
Equating coefficients of $x^{2}:-1=1+k$, so that $k=-2$
The remaining roots are $\frac{2 \pm \sqrt{4-40}}{2}=1 \pm 3 i$

(ii) Conjugate roots

If the coefficients of a polynomial are real, then any complex roots will come in conjugate pairs.
Consider $f(x)=a x^{3}+b x^{2}+c x+d=0$
If $z=x+y i$ is a root,
so that $f(z)=a(x+y i)^{3}+b(x+y i)^{2}+(c x+y i)+d=0+0 i$
Then $a(x-y i)^{3}+b(x-y i)^{2}+(c x-y i)+d$
$=\operatorname{Re}(f(z))-\operatorname{Im}(f(z)) i=0-0 i$
[as i is being replaced with $-i$]
So the complex conjugate is also a root.

Example

If $2+i$ is a root of the equation $x^{3}-7 x^{2}+17 x-15=0$, find the remaining roots.

Solution

$2-i$ is also a root
Then, if α is the other root,
$(2+i)+(2-i)+\alpha=7$, so that $\alpha=3$

