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Recurrence relations (16 pages; 5/9/18) 

(1) Terminology 

The arithmetic sequence  2, 6, 10, 14, 18, … can be represented by 

the deductive (or closed) definition 𝑢𝑛 = 4𝑛 − 2, or by the 

recurrence relation (also known as an inductive or recursive 

definition) 𝑢𝑛 = 𝑢𝑛−1 + 4,  𝑢1 = 2.  

Similarly, the deductive definition for the geometric sequence 

2, 6, 18, 54, 162, … is  𝑢𝑛 = 2(3)𝑛−1, whilst the equivalent 

recurrence relation is  𝑢𝑛 = 3𝑢𝑛−1, 𝑢1 = 2. 

Another recurrence relation is 𝑢𝑛 = 3𝑢𝑛−1 + 4, 𝑢1 = 2 (which 

can be thought of as a combination of the arithmetic and 

geometric sequences). 

A homogeneous recurrence relation is one such as 𝑢𝑛 = 3𝑢𝑛−1 or  

𝑢𝑛 = 3𝑢𝑛−1 + 2𝑢𝑛−2 ('homogeneous' refers to the fact that the 

terms are all of the same form; ie 𝑎𝑢𝑛−𝑟), whilst a 

non-homogeneous recurrence relation is one such as  

𝑢𝑛 = 3𝑢𝑛−1 + 4, or  𝑢𝑛 = 𝑢𝑛−1 − 2𝑢𝑛−2 + 3𝑛, where there is a 

term not of the form 𝑎𝑢𝑛−𝑟 .  

A linear recurrence relation is one which doesn't involve any 

quadratic or higher powers of  𝑢𝑛−𝑟 (for 𝑟 = 0, 1, 2, … ). 

A first order recurrence relation is one which doesn't involve 

𝑢𝑛−2, 𝑢𝑛−3 etc. The recurrence relation  𝑢𝑛 = 𝑢𝑛−1 + 𝑢𝑛−3 would 

be described as third order, for example. 

In order to fully specify a recurrence relation, a first order 

equation would require an initial condition such as 𝑢1 = 2 (as we 

have seen). For an 𝑛th order equation there would need to be 𝑛 

such conditions (eg for a 2nd order equation, 𝑢1 = 2 and 𝑢2 = 3). 
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[Note that 'equation' is often used in place of 'recurrence 

relation'.] 

Note, by the way, that an equation may be defined for 𝑛 ≥ 0, so 

that an initial condition may take the form 𝑢0 = 2, for example. 

Sequences may be convergent (having a limit as 𝑛 → ∞) or 

divergent. In the case of convergent sequences, the limit 𝐿 may be 

found by replacing each 𝑢𝑛−𝑟 term (for 𝑟 = 0, 1, 2, … ) by 𝐿 

(assuming that the resulting equation can be solved). 

Note that the term 'divergent' applies to periodic or oscillating 

sequences (ie not just sequences where the terms get 

progressively larger in magnitude). 

Also note that the method for finding 𝐿 should only be applied 

once it is clear (from the terms of the sequence) that there is 

convergence, as illustrated by the recurrence relation 

𝑢𝑛 = 2𝑢𝑛−1 − 1, 𝑢1 = 2  (2, 3, 5, 9, 17, … ) 

In this case, the equation 𝐿 = 2𝐿 − 1 has the solution 𝐿 = 1, which 

is only the limit when 𝑢1 = 1, and all the terms are 1. 

 

(2) Linear, homogeneous equations 

[The approach adopted in this, and subsequent sections, is very 

similar to that employed when solving differential equations.] 

Note that the solution to  𝑢𝑛 = 3𝑢𝑛−1, 𝑢1 = 2  was  𝑢𝑛 = 2(3)𝑛−1. 

This can be written in the form  𝑢𝑛 = 𝑘𝑥𝑛 (with 𝑥 = 3 & 𝑘 =
2

3
). 

This is the basis for considering  𝑢𝑛 = 𝑥𝑛, as a possible solution 

for the 2nd order homogeneous equation 

𝑢𝑛 = 5𝑢𝑛−1 − 6𝑢𝑛−2 , for example. 

Substituting into the equation gives 
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𝑥𝑛 = 5𝑥𝑛−1 − 6𝑥𝑛−2  

Excluding the trivial solution where 𝑥 = 0, this gives 

𝑥2 − 5𝑥 + 6 = 0 (the auxiliary equation) 

so that (𝑥 − 2)(𝑥 − 3) = 0,  and 𝑥 = 2 or 3. 

Thus two possible solutions are 𝑢𝑛 = 2𝑛 and 3𝑛. 

In general, it can be seen that, if 𝑢𝑛 = 𝑥1
𝑛 and  𝑥2

𝑛 are solutions, 

then  𝐴𝑥1
𝑛 + 𝐵𝑥2

𝑛 will also be a solution. 

It can also be shown that, for a 2nd order equation, this is the 

most general solution; ie all solutions are of this form.  

Similarly, for an 𝑛th order equation, the most general solution is a 

linear combination (with 𝑛 constants) of solutions of an 𝑛th order 

auxiliary equation. 

 

As seen above, the auxiliary equation can be written down 

straightaway from the recurrence relation. 

Thus 𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏𝑢𝑛−2 produces 𝑥2 = 𝑎𝑥 + 𝑏 

In the case of a first order equation, the auxiliary equation is very 

simple. Applying it to 𝑢𝑛 = 3𝑢𝑛−1 (considered earlier), we obtain 

just  𝑥 = 3. 

 

Once a general solution has been obtained, the initial conditions 

are then applied, to find a specific solution to the recurrence 

relation. Thus, if the initial conditions of the equation 

𝑢𝑛 = 5𝑢𝑛−1 − 6𝑢𝑛−2  are 𝑢1 = 2 and 𝑢2 = 3, the specific solution 

is found from substitution into the general solution 𝐴2𝑛 + 𝐵3𝑛, 

so that  𝐴(2) + 𝐵(3) = 2  and  𝐴(22) + 𝐵(32) = 3; 
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ie 2𝐴 + 3𝐵 = 2  and  4𝐴 + 9𝐵 = 3, 

giving  𝐴 =
3

2
  and  𝐵 = −

1

3
, 

so that 𝑢𝑛 = (
3

2
) 2𝑛 − (

1

3
)3𝑛 is the specific solution that satisfies 

the initial conditions. 

Note that the expression 'specific solution' isn't universal, and 

sometimes 'particular solution' is used instead. This is 

unfortunate, because 'particular solution' has another meaning 

(as we shall see shortly). Usually the intended meaning is clear 

from the context though. 

The above approach is very similar to that employed when 

solving differential equations. 

 

Example:  𝑢𝑛 = 𝑢𝑛−1 + 𝑢𝑛−2 ; 𝑢0 = 0, 𝑢1 = 1 

This is the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, … 

[The 𝑢0 term is usually omitted when quoting the sequence. 

However it helps in the working below.] 

The auxiliary equation is  𝑥2 − 𝑥 − 1, which has roots 

𝑥 =
1±√5

2
 (𝜙 and 𝜙 , say) 

The general solution is therefore  𝑢𝑛 = 𝐴𝜙𝑛 + 𝐵𝜙
𝑛

  

Applying the initial conditions, 

𝐴 + 𝐵 = 0  and  𝐴𝜙 + 𝐵𝜙 = 1  

[Note that having 𝑢0 & 𝑢1 as the initial values, rather than 𝑢1 & 𝑢2, 

simplifies the working.] 

Thus  
1

2
𝐴(1 + √5) +

1

2
(−𝐴)(1 − √5) = 1, 
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so that 𝐴(2√5) = 2, and 𝐴 =
1

√5
 , 𝐵 = −

1

√5
 

So the specific solution is 𝑢𝑛 =
1

√5
(𝜙𝑛 − 𝜙

𝑛
)  

Notes 

(i) 𝜙 is the 'golden ratio', which can be defined as follows: 

A 'golden rectangle', having sides in the ratio of 𝜙, is such that it 

can be divided into a square and another golden rectangle. 

Without loss of generality, the sides can then be taken as being of 

lengths 𝜙 and 𝜙 + 1, such that 
𝜙+1

𝜙
= 𝜙, giving 𝜙2 − 𝜙 − 1 = 0. 

(ii) 𝜙𝜙 = (
1+√5

2
) (

1−√5

2
) =

1−5

4
= −1, so that 𝜙 can also be written 

as −
1

𝜙
 

(iii) It can be shown that the ratio of successive terms of the 

Fibonacci sequence converges to 𝜙: 

(a) 𝑢𝑛 = 𝑢𝑛−1 + 𝑢𝑛−2 

⇒
𝑢𝑛

𝑢𝑛−1
= 1 +

𝑢𝑛−2

𝑢𝑛−1
  

If the ratio tends to 𝜆, 𝜆 = 1 +
1

𝜆
 ⇒ 𝜆2 = 𝜆 + 1 ⇒ 𝜆2 − 𝜆 − 1 = 0, 

so that  𝜆 = 𝜙. 

(b) 
𝑢𝑛+1

𝑢𝑛
=

1

√5
(𝜙𝑛+1−𝜙

𝑛+1
) 

1

√5
(𝜙𝑛−𝜙

𝑛
) 

=
𝜙−𝜙(

−1/𝜙

𝜙
)

𝑛+1

1−(
−1/𝜙

𝜙
)

𝑛 =
𝜙−𝜙(

−1

𝜙2)
𝑛+1

1−(
−1

𝜙2)
𝑛 →

𝜙−1

1−0
= 𝜙  

 

(3) Linear, homogeneous equations (cont'd): complex roots of 

auxiliary equation 

Example:  𝑢𝑛 = 4𝑢𝑛−1 − 13𝑢𝑛−2 ; 𝑢1 = 1, 𝑢2 = 2 
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The auxiliary equation is 𝑥2 − 4𝑥 + 13, 

which has the complex roots 𝑥 =
4±√16−52

2
= 2 ± 3𝑖 

and gives the general solution  𝑢𝑛 = 𝐴(2 + 3𝑖)𝑛 + 𝐵(2 − 3𝑖)𝑛   (*) 

It will be seen in a moment that, despite appearances, this can 

produce a real solution. 

2 + 3𝑖 can be written as √13(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃), where 𝑡𝑎𝑛𝜃 =
3

2
 

Then, by de Moivre's theorem,  

𝑢𝑛 = 𝐴(13)
𝑛

2(cos(𝑛𝜃) + 𝑖𝑠𝑖𝑛(𝑛𝜃)) + 𝐵(13)
𝑛

2(cos(𝑛𝜃) − 𝑖𝑠𝑖𝑛(𝑛𝜃))   

Write 𝐶 = 𝐴 + 𝐵  &  𝐷 = 𝑖(𝐴 − 𝐵), 

so that  𝑢𝑛 = 𝐶(13)
𝑛

2 cos(𝑛𝜃) + 𝐷(13)
𝑛

2 sin(𝑛𝜃) 

This show that a real solution will exist, and can be chosen to 

satisfy the initial conditions (because of the two arbitrary 

constants). 

To find the values of 𝐶 & 𝐷, it is more convenient to use the 

cartesian form of the complex numbers: 

Applying the initial conditions to (*), 

1 = 𝐴(2 + 3𝑖) + 𝐵(2 − 3𝑖)    (1) 

and  2 = 𝐴(2 + 3𝑖)2 + 𝐵(2 − 3𝑖)2 

= 𝐴(4 + 12𝑖 − 9) + 𝐵(4 − 12𝑖 − 9)  

= 𝐴(−5 + 12𝑖) + 𝐵(−5 − 12𝑖)   (2) 

Then write  𝐶 = 𝐴 + 𝐵  &  𝐷 = 𝑖(𝐴 − 𝐵), 

so that (1) & (2) give  

1 = 2𝐶 + 3𝐷  (3)  and  2 = −5𝐶 + 12𝐷  (4) 
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4 × (3) − (4) then gives 2 = 13𝐶, 

so that 𝐶 =
2

13
  and 𝐷 =

1

3
(1 −

4

13
) =

3

13
 

[As  𝑖𝐷 = 𝐵 − 𝐴, and hence 𝐶 + 𝑖𝐷 = 2𝐵  &  𝐶 − 𝑖𝐷 = 2𝐴, this 

corresponds to 𝐴 =
1

26
(2 − 3𝑖) & 𝐵 =

1

26
(2 + 3𝑖) ]  

So the specific solution is 

𝑢𝑛 =
2

13
(13)

𝑛

2 cos(𝑛𝜃) +
3

13
(13)

𝑛

2 sin(𝑛𝜃)  

 

(4) Linear, homogeneous equations (cont'd): repeated roots of 

auxiliary equation 

Example: 𝑢𝑛 = 4𝑢𝑛−1 − 4𝑢𝑛−2  are 𝑢1 = 1 and 𝑢2 = 5 

Here the auxiliary equation is 𝑥2 − 4𝑥 + 4 = 0, or (𝑥 − 2)2 = 0, 

and this has the repeated root 𝑥 = 2. 

As before,  𝑢𝑛 = 𝐴(2)𝑛 is a solution. However, it isn't sufficiently 

general for a 2nd order relation, as it only involves one arbitrary 

constant. 

However, we can show that 𝑢𝑛 = 𝐵𝑛(2)𝑛 will be a solution. 

Consider the general 2nd order case: 

𝑢𝑛 + 𝑏𝑢𝑛−1 + 𝑐𝑢𝑛−2 = 0,  

where 𝜆 is the repeated root of the auxiliary equation. 

Then consider  𝑢𝑛 = 𝐵𝑛𝜆𝑛: 

𝑢𝑛 + 𝑏𝑢𝑛−1 + 𝑐𝑢𝑛−2 = 𝐵𝑛𝜆𝑛 + 𝑏𝐵(𝑛 − 1)𝜆𝑛−1 + 𝑐𝐵(𝑛 − 2)𝜆𝑛−2  

= 𝐵𝑛(𝜆𝑛 + 𝑏𝜆𝑛−1 + 𝑐𝜆𝑛−2) − 𝐵𝜆𝑛−2[𝑏𝜆 + 2𝑐]  

The 1st expression is zero, as 𝜆 is a root of the auxiliary equation. 
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Also, the sum and product of the roots of the auxiliary equation 

are −
𝑏

1
 and 

𝑐

1
, so that 2𝜆 = −𝑏  and  𝜆2 = 𝑐, 

and hence 𝑏𝜆 + 2𝑐 = (−2𝜆)𝜆 + 2𝜆2 = 0 

Thus 𝐵𝑛𝜆𝑛 is a solution of the recurrence relation. 

It can be shown that the most general solution is of the form 

(𝐴 + 𝐵𝑛)𝜆𝑛.  

For our example, we have 𝑢𝑛 = (𝐴 + 𝐵𝑛)(2)𝑛, with 𝑢1 = 1 and 

𝑢2 = 5, so that: 

1 = (𝐴 + 𝐵)(2)  and  5 = (𝐴 + 2𝐵)(4), 

or 2 = 4𝐴 + 4𝐵  and  5 = 4𝐴 + 8𝐵, 

so that 3 = 4𝐵, giving 𝐵 =
3

4
  and  𝐴 = −

1

4
 

Thus the solution of the recurrence relation is  

𝑢𝑛 =
1

4
(3𝑛 − 1)(2)𝑛  

 

(5) Linear, non-homogeneous equations  

This covers cases of the form  𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑓(𝑛)  

or  𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏𝑢𝑛−2 + 𝑓(𝑛) etc 

Example: 𝑢𝑛 = 5𝑢𝑛−1 − 6𝑢𝑛−2 + 𝑛2 + 2𝑛; 𝑢1 = 1, 𝑢2 = 4 

The homogeneous equation 𝑢𝑛 = 5𝑢𝑛−1 − 6𝑢𝑛−2 was dealt with 

in (2), and the general solution was found to be 

𝑢𝑛 = 𝐴(2𝑛) + 𝐵(3𝑛). This is referred to as the complementary 

function (CF), and will turn out to be part of the solution of the 

non-homogeneous equation (as will become clear shortly). 
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[The initial conditions are different, but this doesn't need to be 

the case.] 

Suppose that we can find a particular solution of   

𝑢𝑛 = 5𝑢𝑛−1 − 6𝑢𝑛−2 + 𝑛2 + 2𝑛  (which doesn't need to satisfy 

our initial conditions). Let this particular solution be 𝑢𝑛 = 𝑔(𝑛). 

[Note: As already mentioned, the expression 'particular solution' 

is sometimes used (ill-advisedly) to mean a specific solution 

(usually of a homogeneous equation); ie one that satisfies the 

initial conditions. The problem doesn't arise when solving 

differential equations (in a very similar way): in that case, the 

expression 'particular integral' is used instead of 'particular 

solution'.] 

We can rewrite the equation as 

𝑢𝑛 − 5𝑢𝑛−1 + 6𝑢𝑛−2 = 𝑛2 + 2𝑛  (1) 

Then, when 𝑢𝑛 = 𝐴(2𝑛) + 𝐵(3𝑛), the left-hand side is 0, 

and, when 𝑢𝑛 = 𝑔(𝑛), the left-hand side is 𝑛2 + 2𝑛. 

Hence, when 𝑢𝑛 = 𝐴(2𝑛) + 𝐵(3𝑛) + 𝑔(𝑛), the left-hand side is 

also 𝑛2 + 2𝑛. 

Because this function has two arbitrary constants, it can be shown 

that it is the most general solution of the (2nd order) equation. 

We can then choose values for A and B, such that the initial 

conditions are satisfied; 

ie such that  𝐴(21) + 𝐵(31) + 𝑔(1) = 1 

and 𝐴(22) + 𝐵(32) + 𝑔(2) = 4 

The particular function can be found by past experience, and the 

following table shows the trial function that can be substituted 

into the equation, for commonly occurring forms of 𝑓(𝑛). 
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𝑓(𝑛)  trial function 

𝑎  𝑝  

𝑎𝑛(+𝑏)  𝑝𝑛 + 𝑞  

𝑎𝑛2(+𝑏𝑛 + 𝑐)  𝑝𝑛2 + 𝑞𝑛 + 𝑟  

𝑎𝑘𝑛  𝑝𝑘𝑛 (or 𝑝𝑛𝑘𝑛 if the CF includes 𝐴𝑘𝑛) 

(𝑎𝑛2[+𝑏𝑛 + 𝑐])𝑘𝑛  (𝑝𝑛2 + 𝑞𝑛 + 𝑟)𝑘𝑛  

 

In this example, we take 𝑢(𝑛) = 𝑝𝑛2 + 𝑞𝑛 + 𝑟 as the trial function, 

giving: 

𝑝𝑛2 + 𝑞𝑛 + 𝑟 = 5{𝑝(𝑛 − 1)2 + 𝑞(𝑛 − 1) + 𝑟}  

                               −6{𝑝(𝑛 − 2)2 + 𝑞(𝑛 − 2) + 𝑟} + 𝑛2 + 2𝑛  

Equating coefficients of 𝑛2 gives: 

𝑝 = 5𝑝 − 6𝑝 + 1 ⇒ 𝑝 =
1

2
  

Equating coefficients of 𝑛 gives: 

𝑞 = −10𝑝 + 5𝑞 + 24𝑝 − 6𝑞 + 2  

⇒ 2𝑞 = 7 + 2 ⇒ 𝑞 =
9

2
  

And equating the constant terms gives: 

𝑟 = 5𝑝 − 5𝑞 + 5𝑟 − 24𝑝 + 12𝑞 − 6𝑟  

⇒ 2𝑟 = −
19

2
+

63

2
  ⇒ 𝑟 = 11  

So the particular solution  𝑔(𝑛) =
1

2
𝑛2 +

9

2
𝑛 + 11, 

and the general solution is 

𝑢𝑛 = 𝐴(2𝑛) + 𝐵(3𝑛) +
1

2
𝑛2 +

9

2
𝑛 + 11  
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Applying the initial conditions 𝑢1 = 1, 𝑢2 = 4 then gives 

𝐴(21) + 𝐵(31) +
1

2
12 +

9

2
(1) + 11 = 1  

and  𝐴(22) + 𝐵(32) +
1

2
22 +

9

2
(2) + 11 = 4. 

so that  2𝐴 + 3𝐵 = −15  and  4𝐴 + 9𝐵 = −18, 

which produces 𝐴 = −
27

2
 & 𝐵 = 4 

Thus, the specific solution is 

𝑢𝑛 = 4(3𝑛) −
27

2
(2𝑛) +

1

2
𝑛2 +

9

2
𝑛 + 11  

Alternative approach 

Instead of finding the particular solution separately, an 

alternative approach that is sometimes advocated is to combine 

this with the process of applying the initial conditions, using the 

recurrence relation to generate further conditions that have to be 

satisfied. For the example above,  

𝑢𝑛 = 𝐴(2𝑛) + 𝐵(3𝑛) + 𝑝𝑛2 + 𝑞𝑛 + 𝑟  

As well as applying the initial conditions 𝑢1 = 1, 𝑢2 = 4, we know 

from the recurrence relation 𝑢𝑛 − 5𝑢𝑛−1 + 6𝑢𝑛−2 = 𝑛2 + 2𝑛  that 

𝑢3 = 5(2) − 6(1) + 9 + 6 = 19, and similarly for 𝑢4 and 𝑢5. 

However, for this example, solving the 5 simultaneous equations 

will probably be a longer process. Also, strictly speaking, we 

won't have shown that 𝑝𝑛2 + 𝑞𝑛 + 𝑟 satisfies the recurrence 

relation for all 𝑛. 
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(6) Linear, non-homogeneous equations - special cases 

The complementary function will be of the form 𝐴𝑘𝑛 + 𝐵𝑙𝑛, and it 

may be the case that the right-hand side of the non-homogeneous 

equation is 𝑎𝑘𝑛. If this is the case, then the particular solution 

cannot be 𝑝𝑘𝑛, as this would generate zero for the right-hand side 

of (1), instead of 𝑓(𝑛) (as 𝑝𝑘𝑛 is the CF with 𝐴 = 𝑝, and 𝐵 = 0). 

In this situation it can be shown that an appropriate trial function 

is 𝑝𝑛𝑘𝑛. 

Exercise: Show that this is the case for a 2nd order equation. 

Solution 

Consider the recurrence equation  

𝑢𝑛 − (𝑘 + 𝑙)𝑢𝑛−1 + 𝑘𝑙𝑢𝑛−2 = 𝑎𝑘𝑛   

where the auxiliary equation has roots 𝑘 & 𝑙 

We can investigate the trial function 𝑢𝑛 = 𝑝𝑛𝑘𝑛. 

Substituting into the equation gives 

𝑝𝑛𝑘𝑛 − (𝑘 + 𝑙)(𝑝[𝑛 − 1]𝑘𝑛−1) + 𝑘𝑙(𝑝[𝑛 − 2]𝑘𝑛−2) = 𝑎𝑘𝑛  

⇒ (𝑝𝑛 − 𝑎)𝑘2 − (𝑘 + 𝑙)𝑝(𝑛 − 1)𝑘 + 𝑘𝑙𝑝(𝑛 − 2) = 0  

⇒ 𝑘{𝑝𝑛 − 𝑎 − 𝑝(𝑛 − 1)} − 𝑙𝑝(𝑛 − 1) + 𝑙𝑝(𝑛 − 2) = 0  

⇒ 𝑘(𝑝 − 𝑎) − 𝑙𝑝 = 0  

⇒ 𝑝(𝑘 − 𝑙) = 𝑘𝑎  

⇒ 𝑝 =
𝑘𝑎

𝑘−𝑙
  (provided 𝑘 ≠ 𝑙) 

 

Note: Because the choice of trial function can be influenced by the 

complementary function, it is best to find the complementary 

function before the particular solution. 
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Exercise: Find a suitable trial function for a 2nd order equation 

when 𝑓(𝑛) = 𝑎𝑘𝑛, and the auxiliary equation has repeated roots 

of 𝑘. 

Solution 

Consider the recurrence equation  

𝑢𝑛 − 2𝑘𝑢𝑛−1 + 𝑘2𝑢𝑛−2 = 𝑎𝑘𝑛   

We can investigate the trial function 𝑢𝑛 = 𝑝𝑛2𝑘𝑛. 

Substituting into the equation gives 

𝑝𝑛2𝑘𝑛 − 2𝑘𝑝(𝑛 − 1)2𝑘𝑛−1 + 𝑘2𝑝(𝑛 − 2)2𝑘𝑛−2 = 𝑎𝑘𝑛  

⇒ 𝑝𝑛2 − 2𝑝(𝑛 − 1)2 + 𝑝(𝑛 − 2)2 − 𝑎 = 0  

⇒ 𝑛(4𝑝 − 4𝑝) + 4𝑝 − 𝑎 = 0  

⇒ 𝑝 =
𝑎

4
  

 

(7) 1st order equations 

These take the general form  𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏 

Note that when 𝑎 = 1 & 𝑏 ≠ 0, 𝑢𝑛 is an arithmetic sequence. 

And when 𝑎 ≠ 1 & 𝑏 = 0, it is a geometric sequence. 

More generally, the usual method can be applied, to give an 

auxiliary equation of  𝑥 − 𝑎 = 0, so that the CF is 𝑢𝑛 = 𝐴𝑎𝑛 .  

The trial function for the particular solution will be 𝑢𝑛 = 𝑐, 

giving 𝑐 = 𝑎𝑐 + 𝑏, so that 𝑐 =
𝑏

1−𝑎
 , 

and the general solution is  𝑢𝑛 = 𝐴𝑎𝑛 +
𝑏

1−𝑎
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Then, applying the initial condition 𝑢0: 

𝑢0 = 𝐴 +
𝑏

1−𝑎
 , so that the specific solution is  

𝑢𝑛 = (𝑢0 −
𝑏

1−𝑎
) 𝑎𝑛 +

𝑏

1−𝑎
  (*) 

Thus, 𝑢𝑛 is a linear function of 𝑎𝑛. 

 

Alternative method 

As an alternative to deriving (*) as above, we could use the fact 

that 𝑢𝑛 is always a linear function of 𝑎𝑛 to write 

𝑢𝑛 = 𝜆𝑎𝑛 + 𝜇,  and then 𝑢0 = 𝜆 + 𝜇 (1) 

Also, 𝑢1 = 𝑎𝑢0 + 𝑏, so that  𝑎𝑢0 + 𝑏 = 𝜆𝑎 + 𝜇 (2) 

Then (2) − (1) gives 𝑢0(𝑎 − 1) + 𝑏 = 𝜆(𝑎 − 1), 

so that 𝜆 = 𝑢0 +
𝑏

𝑎−1
  or  𝑢0 −

𝑏

1−𝑎
 

and then  𝜇 = 𝑢0 − 𝜆 =
𝑏

1−𝑎
  , as before. 

 

(8) Calculators 

Some calculators have a 'table' function to determine the series 

from the formula, and/or a recurrence function to determine the 

series from the recurrence relation. 

 

(9) Generating Functions: homogeneous equations 

The generating function for 𝑢𝑛 is defined to be 

𝑢(𝑥) = 𝑢0 + 𝑢1𝑥 + 𝑢2𝑥2 + ⋯  

Suppose that the recurrence equation is  𝑢𝑛 + 𝑎𝑢𝑛−1 + 𝑏𝑢𝑛−2 = 0 
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Then  𝑢(𝑥) + 𝑎𝑥𝑢(𝑥) + 𝑏𝑥2𝑢(𝑥)  

= 𝑢0 + 𝑢1𝑥 + 𝑢2𝑥2 + ⋯  

+ 𝑎𝑢0𝑥 + 𝑎𝑢1𝑥2 + 𝑎𝑢2𝑥3 + ⋯  

+ 𝑏𝑢0𝑥2 + 𝑏𝑢1𝑥3 + 𝑏𝑢2𝑥4 + ⋯  

= 𝑢0 + 𝑥(𝑢1 +  𝑎𝑢0) + 𝑥2(𝑢2 + 𝑎𝑢1 +  𝑏𝑢0)  

+𝑥3(𝑢3 + 𝑎𝑢2 +  𝑏𝑢1) + ⋯  

= 𝑢0 + 𝑥(𝑢1 +  𝑎𝑢0),  as all subsequent terms vanish  

And hence  𝑢(𝑥) =
𝑢0+𝑥(𝑢1+ 𝑎𝑢0)

1+𝑎𝑥+𝑏𝑥2   (3) 

Example: Consider the recurrence equation from (2): 

𝑢𝑛 − 5𝑢𝑛−1 + 6𝑢𝑛−2 = 0 , with 𝑢1 = 2 and 𝑢2 = 3, 

[for which the solution was found to be 𝑢𝑛 = (
3

2
) 2𝑛 − (

1

3
)3𝑛] 

First of all, we can find 𝑢0: 

𝑢2 − 5𝑢1 + 6𝑢0 = 0, so that  𝑢0 =
1

6
(10 − 3) =

7

6
 

Then, from (3), we have 𝑢(𝑥) =
7

6
+𝑥(2−5[

7

6
])

1−5𝑥+6𝑥2  

=
7−23𝑥

6(3𝑥−1)(2𝑥−1)
=

𝐴

6(3𝑥−1)
+

𝐵

6(2𝑥−1)
 , 

where 7 − 23𝑥 = 𝐴(2𝑥 − 1) + 𝐵(3𝑥 − 1) 

𝑥 =
1

2
⇒ −

9

2
=

1

2
𝐵 ⇒ 𝐵 = −9  

and  𝑥 =
1

3
⇒ −

2

3
= −

1

3
𝐴 ⇒ 𝐴 = 2 

So  𝑢(𝑥) =
1

3(3𝑥−1)
−

3

2(2𝑥−1)
 

= −
1

3
(1 − 3𝑥)−1 +

3

2
(1 − 2𝑥)−1  
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= −
1

3
(1 + 3𝑥 + (3𝑥)2 + ⋯ ) +

3

2
(1 + 2𝑥 + (2𝑥)2 + ⋯ )  

giving  𝑢𝑛 = −
1

3
(3)𝑛 +

3

2
(2)𝑛, as expected 

 

(10) Generating Functions: non-homogeneous equations 

The approach is the same, but not all the terms vanish on the 

right-hand side. Depending on the form of 𝑓(𝑛), it may or may not 

be possible to write the remaining terms as an expression in 𝑥. 

Suppose that the recurrence equation is 

𝑢𝑛 + 𝑎𝑢𝑛−1 + 𝑏𝑢𝑛−2 = 𝑓(𝑛)  

Then, as before,  𝑢(𝑥) + 𝑎𝑥𝑢(𝑥) + 𝑏𝑥2𝑢(𝑥)  

= 𝑢0 + 𝑢1𝑥 + 𝑢2𝑥2 + ⋯  

+ 𝑎𝑢0𝑥 + 𝑎𝑢1𝑥2 + 𝑎𝑢2𝑥3 + ⋯  

+ 𝑏𝑢0𝑥2 + 𝑏𝑢1𝑥3 + 𝑏𝑢2𝑥4 + ⋯  

= 𝑢0 + 𝑥(𝑢1 +  𝑎𝑢0) + 𝑥2(𝑢2 + 𝑎𝑢1 +  𝑏𝑢0)  

+𝑥3(𝑢3 + 𝑎𝑢2 +  𝑏𝑢1) + ⋯  

= 𝑢0 + 𝑥(𝑢1 +  𝑎𝑢0) + 𝑥2𝑓(2) + 𝑥3𝑓(3) + ⋯  

 

So, for the simple case where 𝑓(𝑛) is a constant, 𝑘 say: 

𝑢(𝑥) =
𝑢0+𝑥(𝑢1+ 𝑎𝑢0)+𝑘𝑥2(1−𝑥)−1

1+𝑎𝑥+𝑏𝑥2  , and this can be dealt with in the  

same way as before. 

 

 

 


