Proof Overview (4/10/21; 3 pages)

Q1 [Practice/E]

If n is a positive integer, and n^{2} is odd, prove that n is odd.

Q2 [Practice/E]

Prove that the sum of the squares of consecutive positive integers is odd.

Q3 [Practice/M]

Prove that there are no positive integers m and n such that $m^{2}=n^{2}+1$

Q4 [Problem/E]

Prove that $E^{\prime} \Rightarrow L^{\prime}$ is equivalent to $L \Rightarrow E$

Q5 [Problem/E]

Suppose that a half price offer applies at selected stores of a supermarket for customers with loyalty cards.
H is "Half price offer applies"
S is "Customer shops at a selected store"
L is "Customer has a loyalty card"

Place the following statements into equivalent groups. Which ones are true?
$H \Rightarrow S$
$H \Leftarrow S$
" H is a necessary condition for S "
" S is a necessary condition for H "
" H is a sufficient condition for S "
" S is a sufficient condition for H "
" H is only true if S is true"
" S is only true if H is true"

Q6 [Problem/E]

Let A be " $x=3$ ", and let B be " $x^{2}=9$ "
Which of the following statements are true?
A is a necessary but not sufficient condition for B
A is a sufficient but not necessary condition for B
B is a necessary but not sufficient condition for A B is a sufficient but not necessary condition for A A (is true) only if B (is true) B (is true) only if A (is true)

Q7 [Problem/E]

For the following statements, group together the ones that are equivalent.

A: $X \Rightarrow Y$
B: Y is a sufficient condition for X
C: X is a necessary condition for Y
D: X is true only if Y is true
$\mathrm{E}: Y$ is true if X is true
F: If Y isn't true then X isn't true
G: If Y is true, then X is true

