Polar Curves - Summary (11 pages; 2/11/20)

[See "Polar Curves" for further details.]

Contents

- (1) Checklist for sketching graphs
- (2) Notes on sketching graphs
- (3) $r = cos(n\theta) \& r = sin(n\theta)$ families
- (4) $r = \lambda + \cos\theta$ family
- (5) x = a and y = b in polar form

Appendix: Example curves

(a)
$$r = \cos\theta$$
 (circle)
(b) $r = \cos(2\theta)$
(c) $r = \sin(3\theta)$
(d) $r = \frac{1}{2} + \cos\theta$
(e) $r = 1 + \cos\theta$ ('cardioid')
(f) $r = \frac{3}{2} + \cos\theta$ ('dimple')
(g) $r = 2 + \cos\theta$ ('egg')

(1) Checklist for sketching graphs

(i) Plot points for convenient values of θ , such as $0 \& \frac{\pi}{2}$.

(ii) Any function of $cos\theta$ will be symmetric about the *x* axis (as $cos(-\theta) = cos\theta$).

(iii) Any function of $sin\theta$ will be symmetric about the y axis (as

 $\sin(\pi - \theta) = \sin\theta).$

(iv) The value(s) of θ for which r = 0 will determine the direction(s) from which the curve approaches the Origin.

(2) Notes on sketching graphs

(i) The points (1, 1) & (-1, -1) have the same value of $tan\theta$ (since $tan(\frac{5\pi}{4}) = tan(\frac{\pi}{4})$). We therefore have to consider which quadrant the point is in.

(ii) To help with drawing the parts of graphs where r < 0 (usually shown as a dotted curve - but sometimes omitted), imagine the hand of a clock sweeping round, but in an anti-clockwise direction (to keep track of θ).

(iii) $1 + \cos \theta = 1 + \sin \left(\frac{\pi}{2}\right)$, so that $\theta = 0$ for $r = 1 + \cos \theta$ (for example) corresponds to $\theta = \frac{\pi}{2}$ for $r = 1 + \sin \theta$, and so the graph of $r = 1 + \sin \theta$ can be obtained from that of $r = 1 + \cos \theta$ by a rotation of $\frac{\pi}{2}$ anti-clockwise.

(iv) $r = f(sin[n\theta])$ can be obtained from $r = f(cos[n\theta])$ by an anti-clockwise rotation of $\frac{\left(\frac{\pi}{2}\right)}{n}$ [As $r = f(cos[n\theta])$ is symmetric about the *x*-axis, whereas $r = f(sin[n\theta])$ is only symmetric about $\theta = \frac{\left(\frac{\pi}{2}\right)}{n}$]

(v) Where there are parts of the curve for which r < 0, there may be apparent symmetry. For example, it appears that $r = \sin(2\theta)$ is symmetric about the *y*-axis, but the apparent reflection of

 $r = \sin(2\alpha)$ in the *y*-axis, where $0 < \alpha < \frac{\pi}{2}$, in fact arises from $r = \sin(2[-\alpha])$, for which r < 0.

(3) $r = cos(n\theta) \& r = sin(n\theta)$ families

Graphs of the form $r = cos(n\theta)$ and $r = sin(n\theta)$ consist of n petals with r = 1 at the end of the petal, together with n petals with r = -1 at the end of the petal.

When *n* is odd, the 'r = -1' petals overlap with the 'r = 1' petals, giving a total of *n* visible petals.

When n is even, there is no overlapping, and so there are 2n visible petals.

(4) $r = \lambda + cos\theta$ family

(Sometimes represented in the form $r = a(p + q\cos\theta)$, in which $\csc \frac{p}{q}$ has the role of λ . The presence of the *a* doesn't affect the shape of the curve.)

The values of λ can be classified as follows:

$$\lambda = 0 : \text{circle}$$
$$0 < \lambda < 1$$
$$\lambda = 1 : '\text{cardioid'}$$
$$1 < \lambda < 2 : '\text{dimple'}$$
$$\lambda \ge 2 : '\text{egg'}$$

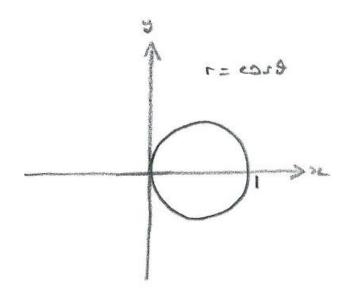
(See Appendix for examples of these.)

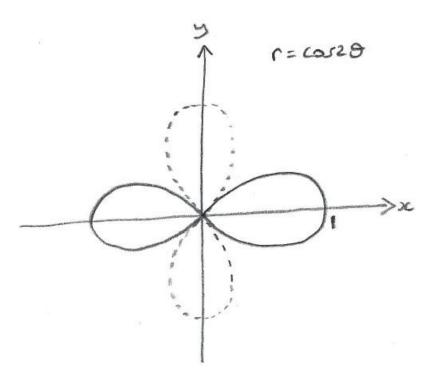
- (5) x = a and y = b in polar form
- $x = a \& x = rcos\theta \Rightarrow rcos\theta = a \Rightarrow r = asec\theta$

 $y = b \& y = rsin\theta \Rightarrow rsin\theta = b \Rightarrow r = bcosec\theta$

Appendix: Example curves

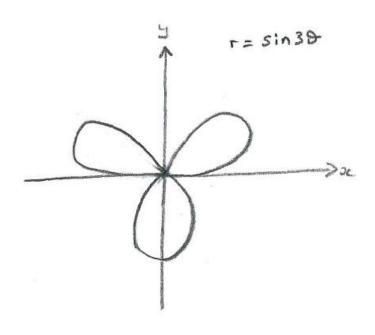
(a) $r = \cos\theta$ (circle)





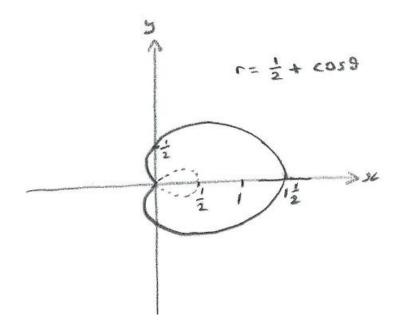
fmng.uk

(c) $r = sin(3\theta)$

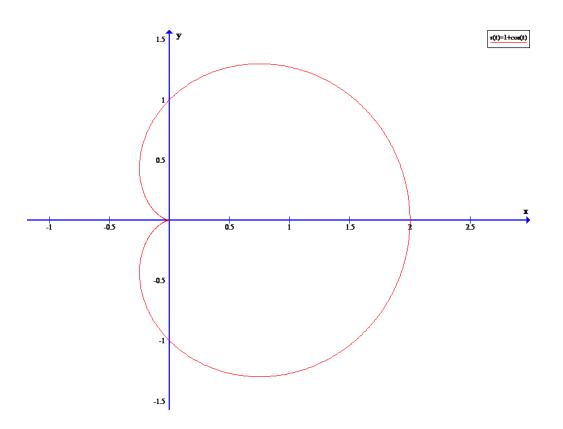


fmng.uk

(d) $r = \frac{1}{2} + \cos\theta$



(e) $r = 1 + \cos\theta$ ('cardioid')



(f) $r = \frac{3}{2} + \cos\theta$ ('dimple') $r = l\frac{1}{2} + \cos\theta$ $l\frac{1}{2}$ $l\frac{1}{2}$ $l\frac{1}{2}$ (g) $r = 2 + \cos\theta$ ('egg')

