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Polar Curves (21 pages; 2/11/20)   

[See also Important Ideas: Polar Curves, for a summary of the 

main points.] 

 

(1) Obtaining polar coordinates (𝑟, 𝜃) from Cartesian coordinates 

 

𝑟2 = 𝑥2 + 𝑦2  

𝑡𝑎𝑛𝜃 =
𝑦

𝑥
  

 

Either 0 ≤ 𝜃 < 2𝜋  ['2𝜋 convention'] 

or  −𝜋 < 𝜃 ≤ 𝜋  ['𝜋 convention'] 

 

𝜃 is undefined for the Origin 

 

A negative 𝑟 can be catered for as follows: If 𝜃 is 
𝜋

4
 and 𝑟 = −1, for 

example, then the point would be plotted at (
𝜋

4
+ 𝜋, 1).  

Some textbooks (and exam boards), however, exclude the parts of 

the curve where 𝑟 < 0.  Sometimes these parts are indicated by a 

dotted curve. However, even if the curve isn't to be drawn for 

𝑟 < 0, it helps the curve-sketching process to be aware of where 

this dotted curve would be. 
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Note that, for example, the points (1, 1) & (−1, −1) have the same 

value of 𝑡𝑎𝑛𝜃 (since tan (
5𝜋

4
) = 𝑡𝑎𝑛 (

𝜋

4
)). We therefore have to 

consider which quadrant the point is in.  

 

It is possible to use polar graph paper, which has concentric 

circles for particular values of 𝑟 , and radial lines at 𝜃 =
𝜋

6
 ,  

𝜋

3
  𝑒𝑡𝑐. 

 

(2) Obtaining Cartesian coordinates from polar coordinates  

𝑥 = 𝑟𝑐𝑜𝑠𝜃 ;  𝑦 = 𝑟𝑠𝑖𝑛𝜃   

 

(3) Sketching graphs 

Example:  𝑟 = 1 + 𝑠𝑖𝑛𝜃 (see graph) 

(i) Plot points for convenient values of 𝜃, such as 0 & 
𝜋

2
  

(ii) Any function of 𝑠𝑖𝑛𝜃 will be symmetric about the 𝑦 axis (ie 

𝜃 =
𝜋

2
) [The reflection of a general function 𝑦 = 𝑓(𝜃) about 𝜃 =

𝜋

2
  

is  𝑦 = 𝑓(𝜋 − 𝜃), and  𝑟(𝜋 − 𝜃) = 𝑟(𝜃) for 𝑟(𝜃) = 1 + 𝑠𝑖𝑛𝜃 (or any 

other function of 𝑠𝑖𝑛𝜃)] 

(iii) As 𝜃 →
3𝜋

2
 , 𝑟 ⟶ 0, and the direction of the curve approaches 

 𝜃 =
3𝜋

2
  as  𝑟 ⟶ 0 

Note that 𝑟 < 0 is not possible. 
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This shape is known as the 'cardioid'. 

 

(4) Example: 𝑟 = 1 + 𝑐𝑜𝑠𝜃  (see graph) 

(i) Points can be plotted for 𝜃 = 0  &  𝜃 =
𝜋

2
 , as before. 

(ii) As cos(−𝜃) = 𝑐𝑜𝑠𝜃,  𝑟(−𝜃) = 𝑟(𝜃)  

and in general, any function of 𝑐𝑜𝑠𝜃 will be symmetric about the 

𝑥 axis (ie 𝜃 = 0) 

(iii) 𝑟 = 0 ⇒  𝜃 = 𝜋 
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Note that, for example,  1 + 𝑐𝑜𝑠0 = 1 + 𝑠𝑖𝑛 (
𝜋

2
) , so that 𝜃 = 0 for 

𝑟 = 1 + 𝑐𝑜𝑠𝜃  corresponds to 𝜃 =
𝜋

2
 for  r = 1 + 𝑠𝑖𝑛𝜃 , and the 

graph of  𝑟 = 1 + 𝑐𝑜𝑠𝜃  can be obtained from that of  r = 1 + 𝑠𝑖𝑛𝜃 

by a rotation of  
𝜋

2
 clockwise. 

 

(5) In general,   𝑟(2𝛼 − 𝜃) = 𝑟(𝜃) ⇒ symmetry about 𝜃 = 𝛼 

 

(6) Example: 𝑟 = 1 + 𝑠𝑖𝑛2𝜃 (see graph) 

(i) Points can be plotted for 𝜃 = 0  &  𝜃 =
𝜋

2
 , as before. 

(ii) Being a function of 𝑠𝑖𝑛𝜃,  there will be symmetry about the 

𝑦 axis. And as 𝑠𝑖𝑛2𝜃 = 1 − 𝑐𝑜𝑠2𝜃,  𝑟 is also a function of 𝑐𝑜𝑠𝜃, and 

hence there is symmetry about the 𝑥 axis. 

(iii) 𝑟 > 0 for all 𝜃 
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(iv) We could investigate the stationary points of 𝑟, as follows: 

𝑑𝑟

𝑑𝜃
= 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 = sin(2𝜃)  and 

𝑑2𝑟

𝑑𝜃2 = 2cos (2𝜃), 

At 𝜃 = 0 & 𝜋,  
𝑑𝑟

𝑑𝜃
= 0  and 

𝑑2𝑟

𝑑𝜃2 > 0, so that there is a minimum for 

𝑟. At 𝜃 =
𝜋

2
 & 

3𝜋

2
,  

𝑑𝑟

𝑑𝜃
= 0  and 

𝑑2𝑟

𝑑𝜃2 < 0, so that there is a maximum 

for 𝑟. 

 

 

 

(7) Example: 𝑟 = 𝑐𝑜𝑠2𝜃 (see graph) 

(i) Points can be plotted for 𝜃 = 0  &  𝜃 =
𝜋

2
  

(ii) As  𝑐𝑜𝑠2𝜃 = 𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃, which can be expressed as either 

a function of 𝑐𝑜𝑠𝜃 or a function of 𝑠𝑖𝑛𝜃, there is symmetry about 

both 𝜃 = 0 & 𝜃 =
𝜋

2
. 

(iii) Graphs of the form 𝑟 = 𝑐𝑜𝑠 (𝑛𝜃) and 𝑟 = 𝑠𝑖𝑛 (𝑛𝜃) will consist 

of a number of petals, and the location of these petals can be 
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established by considering their extremities, where |𝑟| takes its 

maximum value, in this case ±1. 

𝑟 = 1 ⇒ 𝜃 = 0, 𝜋 (within the interval [0,2𝜋)) 

𝑟 = −1 ⇒ 𝜃 =
𝜋

2
 ,

3𝜋

2
  

(iv) 𝑟 = 0 ⇒ 𝜃 =
𝜋

4
,  

3𝜋

4
 … (every 

𝜋

2
) 

(iv) 𝑟 < 0 when 
𝜋

4
< 𝜃 <

3𝜋

4
 (lower petal of the graph) and 

 
5𝜋

4
< 𝜃 <

7𝜋

4
 (upper petal) 

A useful device for drawing the parts of graphs where 𝑟 < 0 is to 

imagine the hand of a clock sweeping round, but in an anti-

clockwise direction. For  
𝜋

4
< 𝜃 <

3𝜋

4
 in this example, when 𝑟 < 0, 

the curve is on the far side of the Origin, relative to the clock hand, 

and as the hand continues round it is clear that the lower petal is 

being followed, rather than the lefthand one. Thus, by the time 

𝜃 =
𝜋

2
 has been reached, the curve is at the bottom of the lower 

petal. 
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(8) Example: 𝑟 = 𝑠𝑖𝑛2𝜃 (see graph) 

(i) The same methods can be used as for  𝑟 = 𝑐𝑜𝑠2𝜃.  

(ii) However, there is neither symmetry about the 𝑥 or 𝑦 axes 

(despite the appearance of the graph, as explained below): 

𝑠𝑖𝑛2𝜃 = 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 is neither a function of 𝑠𝑖𝑛𝜃 or 𝑐𝑜𝑠𝜃, except 

for limited intervals, as 𝑠𝑖𝑛2𝜃 = 2𝑠𝑖𝑛𝜃√1 − 𝑠𝑖𝑛2𝜃 for some values 

of 𝜃 (eg 𝜃 =
𝜋

4
), but −2𝑠𝑖𝑛𝜃√1 − 𝑠𝑖𝑛2𝜃 for others (eg 𝜃 =

3𝜋

4
) ; 

bearing in mind that  √1 − 𝑠𝑖𝑛2𝜃 means the positive square root. 

Thus, for 𝜃 =
𝜋

4
, sin2θ = 1, but 𝑠𝑖𝑛2(𝜋 − 𝜃) = −1, so that there 

isn't symmetry about the 𝑦 axis. 

There is apparent symmetry in the graph, but it should be noted 

that the dotted curve in the 2nd quadrant relates to an angle in 

the 4th quadrant (and vice versa), because 𝑟 < 0. 

(iii) 𝑟 = 𝑠𝑖𝑛2𝜃 can also be obtained from 𝑟 = 𝑐𝑜𝑠2𝜃 by a rotation, 

by noting that 𝑟 = 𝑠𝑖𝑛2𝜃 is behind 𝑟 = 𝑐𝑜𝑠2𝜃 by 
𝜋

4
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[𝑐𝑜𝑠2(0) = 𝑠𝑖𝑛2(
𝜋

4
)] 

 

Tip: To draw the graph of 𝒓 = 𝐬𝐢𝐧 (𝒏𝜽), draw the graph of 

𝒓 = 𝒄𝒐𝒔 (𝒏𝜽) (which has symmetry about the 𝒙-axis, where 

𝜽 = 𝟎), and rotate it by 
(

𝝅

𝟐
)

𝒏
 (anti-clockwise). 

 

(9) Example: 𝑟 = 𝑠𝑖𝑛3𝜃 (see graph) 

(i) 𝑟 = 1 ⇒ 𝜃 =
𝜋

6
,

5𝜋

6
 ,

9𝜋

6
 (within the interval [0,2𝜋)) 

𝑟 = −1 ⇒ 𝜃 =
3𝜋

6
,

7𝜋

6
 ,

11𝜋

6
  

Notice that  
3𝜋

6
+ 𝜋 =

9𝜋

6
 , 

7𝜋

6
+ 𝜋 =

13𝜋

6
=

𝜋

6
+ 2𝜋 

and 
11𝜋

6
+ 𝜋 =

17𝜋

6
=

5𝜋

6
+ 2𝜋 

This means that when the dotted curve is drawn at 𝑟 = −1, it will 

overlap the bold curve at 𝑟 = 1. 
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This is a feature of curves of the form 𝑟 = 𝑎𝑠𝑖𝑛([2𝑛 + 1]𝜃)   

and  𝑟 = 𝑎𝑐𝑜𝑠([2𝑛 + 1]𝜃), which will have 2𝑛 + 1 petals (each 

occurring twice). 

Curves of the form  𝑟 = asin(2𝑛𝜃)  and  𝑟 = acos(2𝑛𝜃) will have 

2𝑛 bold petals and 2𝑛 dotted petals, as seen with 𝑟 = sin(2𝜃) and 

𝑟 = cos(2𝜃). 

(ii) It can be seen from the position of the petals ( 𝜃 =
𝜋

6
,

5𝜋

6
 ,

3𝜋

2
 ) 

that there is in fact symmetry about the 𝑦 axis. 

𝑠𝑖𝑛3𝜃 can be shown to be expressible as  3𝑠𝑖𝑛𝜃 − 4𝑠𝑖𝑛3𝜃  

(eg using de Moivre's theorem), and is thus a function of 𝑠𝑖𝑛𝜃. 

𝑠𝑖𝑛([2𝑛 + 1]𝜃) can also be expressed in terms of powers of 𝑠𝑖𝑛𝜃, 

but sin(2𝑛𝜃) cannot. 

 

(iii) Alternatively, to show that 𝑟 = 𝑠𝑖𝑛3𝜃  has symmetry about 

the 𝑦 axis, we can let  𝑓(𝜃) = 𝑠𝑖𝑛3𝜃, and show that  𝑓 (
𝜋

2
+ 𝜃) =

𝑓(
𝜋

2
− 𝜃)  [or that 𝑓(𝜋 − 𝜃) = 𝑓(𝜃)] 

Thus: 

𝑠𝑖𝑛 [3 (
𝜋

2
+ 𝜃)] = 𝑠𝑖𝑛 (

3𝜋

2
+ 3𝜃) = 𝑠𝑖𝑛 (3𝜃 −

𝜋

2
) = −𝑠𝑖𝑛(

𝜋

2
− 3𝜃)  

= −𝑐𝑜𝑠(3𝜃)  

 and  𝑠𝑖𝑛 [3 (
𝜋

2
− 𝜃)] = 𝑠𝑖𝑛 (

3𝜋

2
− 3𝜃) = 𝑠𝑖𝑛 (−3𝜃 −

𝜋

2
) 

= −𝑠𝑖𝑛(3𝜃 +
𝜋

2
) = −𝑠𝑖𝑛 (

𝜋

2
− (−3𝜃)) = −𝑐𝑜𝑠(−3𝜃) = −𝑐𝑜𝑠(3𝜃) 
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(10) Example: 𝑟 = 𝑐𝑜𝑠3𝜃 (see graph) 

𝑟 = 𝑐𝑜𝑠𝜃 can be obtained from 𝑟 = 𝑠𝑖𝑛𝜃 by rotating by 
𝜋

2
 radians 

clockwise, and we saw that 𝑟 = 𝑐𝑜𝑠2𝜃 was obtained from 𝑟 =

𝑠𝑖𝑛2𝜃 by a rotation of  
𝜋

4
 radians. 

For 𝑟 = 𝑐𝑜𝑠3𝜃, we rotate by 
𝜋

2

3
=

𝜋

6
 radians. 
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(11) 𝒓 = 𝝀 + 𝒄𝒐𝒔𝜽 

The following graphs show typical members of this family. 

(The family is sometimes represented in the form 

 𝑟 = 𝑎(𝑝 + 𝑞𝑐𝑜𝑠𝜃), in which case 
𝑝

𝑞
 has the role of 𝜆. The presence 

of the 𝑎 doesn't affect the shape of the curve.) 

The values of 𝜆 can be classified as follows: 

𝜆 = 0 : circle 

0 < 𝜆 < 1  

𝜆 = 1 : 'cardioid' 

1 < 𝜆 < 2 : 'dimple' 

𝜆 ≥ 2 : 'egg' 

For 𝑟 = 𝑐𝑜𝑠𝜃, note that (as discussed above) there is an odd 

number of petals (ie one), and the curve for 𝑟 < 0 (when 
𝜋

2
< 𝜃 <

3𝜋

2
 ) duplicates the curve for 𝑟 > 0 (when 0 < 𝜃 <

𝜋

2
  and 

3𝜋

2
< 𝜃 <

2𝜋). 
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(12) 𝒓 = 𝟏 − 𝒄𝒐𝒔𝜽 (see graph) 

1 − 𝑐𝑜𝑠𝜃 = 1 + 𝑐𝑜𝑠(𝜋 − 𝜃), so the curve  𝑟 = 1 − 𝑐𝑜𝑠𝜃 can be 

produced by working backwards from 𝜃 = 𝜋 on the curve 

 𝑟 = 1 + 𝑐𝑜𝑠𝜃, to give a reflected cardioid  
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(13) Example: Convert the parabola  𝑦2 = 4(1 − 𝑥)  (𝑥 ≤ 1)  to 

polar form. 

Solution 

First of all, to draw the curve in its Cartesian form, consider the 

series of transformations: 

𝑦2 = 4𝑥 → 𝑦2 → 4(−𝑥) → 4(−[𝑥 − 1]) = 4(1 − 𝑥)  
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𝑥 = 𝑟𝑐𝑜𝑠𝜃,   𝑦 = 𝑟𝑠𝑖𝑛𝜃  ; hence  𝑟2𝑠𝑖𝑛2𝜃 = 4(1 − 𝑟𝑐𝑜𝑠𝜃)  

⇒ 𝑟2𝑠𝑖𝑛2𝜃 + 4𝑟𝑐𝑜𝑠𝜃 − 4 = 0 

 ⇒ 𝑟 =
−4𝑐𝑜𝑠𝜃±√16𝑐𝑜𝑠2𝜃+16𝑠𝑖𝑛2𝜃

2𝑠𝑖𝑛2𝜃
  

=
−2𝑐𝑜𝑠𝜃±2

𝑠𝑖𝑛2𝜃
=

2(1−𝑐𝑜𝑠𝜃)

(1−𝑐𝑜𝑠2𝜃)
  or  

−2(1+𝑐𝑜𝑠𝜃)

(1−𝑐𝑜𝑠2𝜃)
 

=
2

1+𝑐𝑜𝑠𝜃
  or  

−2

1−𝑐𝑜𝑠𝜃
  

For simplicity, we can require 𝑟 > 0, so that  𝑟 =
2

1+𝑐𝑜𝑠𝜃
 

[
−2

1−𝑐𝑜𝑠𝜃
 can be written as 

−2

1+cos(𝜋−𝜃)
=

−2

1+cos(𝜃−𝜋)
 ; thus the angle is 

changed by half a revolution, which balances the change of sign, to 

give the same point] 

Also, stationary values of 𝑟 can be investigated: 

𝑑𝑟

𝑑𝜃
= −2(1 + 𝑐𝑜𝑠𝜃)−2(−𝑠𝑖𝑛𝜃)  

𝑑𝑟

𝑑𝜃
= 0 ⇒  𝜃 = 0 (but not 𝜋) ⇒ 𝑟 = 1  
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(then we could consider the sign of  
𝑑2𝑟

𝑑𝜃2  to verify that there is a 

minimum at 𝑟 = 1) 

 

(14) Example: Find the Cartesian equation of the curve 𝑟 = 2𝑐𝑜𝑠𝜃  

𝑥 = 𝑟𝑐𝑜𝑠𝜃 ,  𝑦 = 𝑟𝑠𝑖𝑛𝜃   

⇒ 𝑥 = 2𝑐𝑜𝑠2𝜃,   𝑦 = 2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃  

⇒ 𝑦2 = 4𝑐𝑜𝑠2𝜃(1 − 𝑐𝑜𝑠2𝜃) = 𝑥(2 − 𝑥) = 2𝑥 − 𝑥2 

⇒  𝑥2 + 𝑦2 − 2𝑥 = 0 ⇒ (𝑥 − 1)2 + 𝑦2 = 1  
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(15) Area enclosed by a curve 

 

Referring to the diagram, the area of infinitesimal sector  

=  
1

2
(𝛿𝜃)𝑟2 

Hence required area = lim
𝛿𝜃→0

∑
1

2
(𝛿𝜃)𝑟2𝛽

𝛼 = ∫
1

2
𝑟2𝑑𝜃

𝛽

𝛼
 

 

(16) Example: Find the area enclosed by 

𝑟 = 1 + 𝑠𝑖𝑛𝜃  above the 𝑥 axis 
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Area = ∫
1

2
(1 + 𝑠𝑖𝑛𝜃)2𝑑𝜃

𝜋

0
=

1

2
∫ 1 + 2𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛2𝜃 𝑑𝜃

𝜋

0
 

= 
1

2
∫ 1 + 2𝑠𝑖𝑛𝜃 +

1

2
(1 − 𝑐𝑜𝑠2𝜃) 𝑑𝜃

𝜋

0
 

= 
1

2
 [

3𝜃

2
− 2𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛2𝜃]

𝜋
0

 

=
1

2
{[

3𝜋

2
+ 2 − 0] − [0 − 2 − 0]} 

=
3𝜋

4
  + 2 

 

Note: Unlike ordinary integration to find the area under a curve, 

for polar curves we don't need to worry about areas under the 

𝑥 axis contributing negative amounts (and therefore having to be 

dealt with separately). 
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(17) Tangents to Curves 

Consider 𝑟 = 2𝑐𝑜𝑠𝜃 

𝑥 = 𝑟𝑐𝑜𝑠𝜃  

𝑦 = 𝑟𝑠𝑖𝑛𝜃  

𝑑𝑦

𝑑𝑥
=

𝑑𝑦/𝑑𝜃

𝑑𝑥/𝑑𝜃
   

horizontal tangent ⇒ 
𝑑𝑦

𝑑𝜃
= 0  

vertical tangent ⇒ 
𝑑𝑥

𝑑𝜃
= 0  

 

 

𝑥 = 𝑟𝑐𝑜𝑠𝜃 = 2𝑐𝑜𝑠2𝜃  

𝑦 = 𝑟𝑠𝑖𝑛𝜃 = 𝑠𝑖𝑛2𝜃  

Exercise: Find where the tangents are horizontal and vertical. 

Solution 

𝑟 = 2𝑐𝑜𝑠𝜃 ; 𝑥 = 𝑟𝑐𝑜𝑠𝜃 = 2𝑐𝑜𝑠2𝜃 ; 𝑦 = 𝑟𝑠𝑖𝑛𝜃 = 𝑠𝑖𝑛2𝜃  

𝑑𝑦

𝑑𝜃
= 2𝑐𝑜𝑠2𝜃 ; horizontal tangent ⇒ 

𝑑𝑦

𝑑𝜃
= 0 

⇒ 2𝜃 =
𝜋

2
,

3𝜋

2
,

5𝜋

2
, 

7𝜋

2
 

⇒ 𝜃 =
𝜋

4
,

3𝜋

4
,

5𝜋

4
, 

7𝜋

4
   

𝑑𝑥

𝑑𝜃
= 4𝑐𝑜𝑠𝜃(−𝑠𝑖𝑛𝜃) = −2𝑠𝑖𝑛2𝜃  

vertical tangent ⇒ 
𝑑𝑥

𝑑𝜃
= 0  

⇒ 2𝜃 = 0, 𝜋, 2𝜋, 3𝜋  
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⇒  𝜃 = 0,
𝜋

2
 ,  𝜋,

3𝜋

2
  

 

(18) To express equations of tangents in polar form 

Horizontal tangent (𝜃 =
𝜋

4
) 

𝑦 = 𝑎 & 𝑦 = 𝑟𝑠𝑖𝑛𝜃 ⇒ 𝑟𝑠𝑖𝑛𝜃 = 𝑎 ⇒ 𝑟 = 𝑎𝑐𝑜𝑠𝑒𝑐𝜃  

𝑟 = 2𝑐𝑜𝑠𝜃 ; 𝜃 =
𝜋

4
 ⇒ 𝑟 = 2 (

1

√2
) = √2 

So √2 =
𝑎

(
1

√2
)

⇒ 𝑎 = 1 

Eq'n of tangent is r = cosec𝜃  

[Check: goes through (0,1)] 

Exercise: Find eq'n of vertical tangent when 𝜃 = 0 

Solution 

𝑥 = 𝑎 & 𝑥 = 𝑟𝑐𝑜𝑠𝜃 ⇒ 𝑟𝑐𝑜𝑠𝜃 = 𝑎 ⇒ r = 𝑎𝑠𝑒𝑐𝜃  

𝑟 = 2𝑐𝑜𝑠𝜃 ; 𝜃 = 0 ⇒ 𝑟 = 2(1) = 2 

So 2 = 𝑎(1) ⇒ 𝑎 = 2 

Eq'n of tangent is 𝑟 = 2𝑠𝑒𝑐𝜃  

 

 


