fmng.uk

Polar Curves (21 pages; 2/11/20)

[See also Important Ideas: Polar Curves, for a summary of the
main points.]

(1) Obtaining polar coordinates (r, 8) from Cartesian coordinates

Either 0 < 6 < 2m ['2m convention'] | Y

or —m < 68 <m ['mconvention']
6 is undefined for the Origin

A negative r can be catered for as follows: If 6 is % andr = —1, for

example, then the point would be plotted at (% + 7, 1).

Some textbooks (and exam boards), however, exclude the parts of
the curve where r < 0. Sometimes these parts are indicated by a
dotted curve. However, even if the curve isn't to be drawn for

r < 0, it helps the curve-sketching process to be aware of where
this dotted curve would be.
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Note that, for example, the points (1,1) & (—1, —1) have the same

value of tan@ (since tan(%n) = tan G)). We therefore have to

consider which quadrant the point is in.

It is possible to use polar graph paper, which has concentric
circles for particular values of r, and radial lines at 8 = % , % etc.

(2) Obtaining Cartesian coordinates from polar coordinates

X =r1cosf; y =rsinb

(3) Sketching graphs
Example: r = 1 + sin6 (see graph)
(i) Plot points for convenient values of 8, such as 0 & g

(ii) Any function of sinf will be symmetric about the y axis (ie
0 = g) [The reflection of a general function y = f(6) about 8 = g

isy=f(m—20),and r(m — 0) = r(0) forr(6) = 1 + sinb (or any
other function of sinf)]

(iii) As 8 — 3;” ,7 — 0, and the direction of the curve approaches
0 = 3;” asr—0

Note that r < 0 is not possible.
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This shape is known as the 'cardioid".

(4) Example: r = 1 + cosf (see graph)
(i) Points can be plotted for8 =0 & 6 = %, as before.
(ii) As cos(—8) = cos0O, r(—8) = r(9)

and in general, any function of cos@ will be symmetric about the
x axis (ie 8 = 0)

(i)r=0=>6=n
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Note that, for example, 1 4+ cos0 = 1 + sin (g) ,so that & = 0 for

r =1+ cosf correspondsto 8 = %for r =1+ sinf, and the

graph of r =1 + cosf can be obtained from that of r = 1 + sin6

by a rotation of g clockwise.

(5) In general, r(2a —0) = r(8) = symmetry about 6 = «

(6) Example: v = 1 + sin?6 (see graph)
(i) Points can be plotted for8 =0 & 6 = %, as before.

(ii) Being a function of sinf, there will be symmetry about the

y axis. And as sin?0 = 1 — cos?0, ris also a function of cos8, and
hence there is symmetry about the x axis.

(iii) r > O for all 6
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(iv) We could investigate the stationary points of r, as follows:

2
2 = 2sinfcosh = sin(26) and% = 2cos(20),

do
d

At =0&mm, —;=O d?>0 so that there is a minimum for
3T dr

r.Atg =Z2 & P T 0 a d?< 0, so that there is a maximum

for .

.
15

(7) Example: r = cos20 (see graph)
(i) Points can be plotted for0 =0 & 0 = g

(ii) As cos20 = cos?6 — sin*6, which can be expressed as either
a function of cos@ or a function of sinf, there is symmetry about

both9=0&9=§.

(iii) Graphs of the form r = cos(nf) and r = sin(nf) will consist
of a number of petals, and the location of these petals can be
5
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established by considering their extremities, where |r| takes its

maximum value, in this case +1.

r =1 = 0 = 0, (within the interval [0,21))

r=-120==2 2
2’2
(iv)r=0=>9=%, %ﬂ ...(every%)

(iv)r <0 when% <0< %ﬂ (lower petal of the graph) and
%ﬂ <0< %ﬂ (upper petal)

A useful device for drawing the parts of graphs where r < 0 is to
imagine the hand of a clock sweeping round, but in an anti-

. . . 37 . .
clockwise direction. For % <0< Tn in this example, when r < 0,

the curve is on the far side of the Origin, relative to the clock hand,
and as the hand continues round it is clear that the lower petal is
being followed, rather than the lefthand one. Thus, by the time

0 = g has been reached, the curve is at the bottom of the lower

petal.



fmng.uk

N C=zCas28

(8) Example: r = sin26 (see graph)
(i) The same methods can be used as for r = cos26.

(ii) However, there is neither symmetry about the x or y axes
(despite the appearance of the graph, as explained below):

sin20 = 2sinBcos0 is neither a function of sinf or cos6, except
for limited intervals, as sin26 = 2s5in6vV1 — sin20 for some values
of 6 (egf = g), but —2sin6v1 — sin26 for others (eg 6 = %n) ;
bearing in mind that V1 — sin?6 means the positive square root.
Thus, for 8 = %, sin20 = 1, but sin2(m — 6) = —1, so that there

isn't symmetry about the y axis.

There is apparent symmetry in the graph, but it should be noted
that the dotted curve in the 2nd quadrant relates to an angle in
the 4th quadrant (and vice versa), because r < 0.

(iii) r = sin26 can also be obtained from r = cos26 by a rotation,

by noting that r = sin26 is behind r = cos26 by%



[cos2(0) = sin2 (%)]

- Sen 23

> 3t

Tip: To draw the graph of r = sin(n@), draw the graph of

r = cos(n@) (which has symmetry about the x-axis, where

T

0 = 0), and rotate it by (in) (anti-clockwise).

(9) Example: r = sin36 (see graph)

,5?” ,%ﬂ (within the interval [0,27))
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ro_1mg=2 I r
6
. 3 or 7 13
Notice that —n+ﬂ=—n,—n+n=—n—z+2n
6 6’ 6 6
11 17 5
and— 47 =— =421
6 6 6
This means that when the dotted curve is drawn atr = —1, it will

overlap the bold curve atr = 1.
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This is a feature of curves of the form r = asin([2n + 1]6)

and r = acos([2n + 1]6), which will have 2n + 1 petals (each
occurring twice).

Curves of the form r = asin(2n6) and r = acos(2n8) will have
2n bold petals and 2n dotted petals, as seen with r = sin(26) and
r = cos(26).

5m 3m

(ii) It can be seen from the position of the petals (6 = %,? )

that there is in fact symmetry about the y axis.
sin360 can be shown to be expressible as 3sinf — 4sin36
(eg using de Moivre's theorem), and is thus a function of sinf.

sin([2n + 1]0) can also be expressed in terms of powers of siné,
but sin(2n6) cannot.

(iii) Alternatively, to show that r = sin36 has symmetry about

the y axis, we can let f(8) = sin360, and show that f (% + 9) =
fG—=6) [orthat f(m — 6) = f(6)]
Thus:

. . (3 . .
sin [3 (g + 9)] = sin (f + 39) = sin (39 — g) = —Sln(g — 30)
= —cos(30)

and sin [3 (g — 9)] = sin (Sn — 39) = sin (—39 — g)

2

= —sin(360 + g) = —sin (g — (—39)) = —cos(—360) = —cos(360)
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(10) Example: r = cos36 (see graph)

r = cosf can be obtained from r = sinf by rotating by% radians

clockwise, and we saw that r = cos26 was obtained from r =

sin26 by a rotation of % radians.

A
For r = cos360, we rotate by ? = % radians.
b
' C= COJ39

RN D
. .l.‘“ , 8

NS A ~3
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(11) r = 2+ cosO

The following graphs show typical members of this family.
(The family is sometimes represented in the form

r = a(p + qcosB), in which case s has the role of A. The presence
of the a doesn't affect the shape of the curve.)

The values of A can be classified as follows:

A = 0:circle

0<A<1

A =1:"cardioid'

1 <A< 2:'dimple

A=>2:'egg

For r = cos@, note that (as discussed above) there is an odd

number of petals (ie one), and the curve forr < 0 (Wheng <0<

3;”) duplicates the curve forr > 0 (when 0 < 8 < g and 3711 <0<
21).

11
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(12) r =1 — cos0O (see graph)

1 —cosf =1+ cos(m — 8),sothecurve r =1 — cos6f can be
produced by working backwards from 6 = m on the curve

r =1+ cos0, to give areflected cardioid

14
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(13) Example: Convert the parabola y? = 4(1 —x) (x <1) to
polar form.

Solution

First of all, to draw the curve in its Cartesian form, consider the
series of transformations:

y? =4x > y? - 4(—x) - 4(—[x —1]) = 4(1 — x)

15



fmng.uk

x =rcosf, y =rsinf ; hence r?sin?8 = 4(1 — rcos)

= r2s5in0 + 4rcosd —4 =0

_ —4c0s0+V16c0s260+16sin20

=>7r=

2sin20
_ —2cosf+2  2(1-—cos0) —2(1+4+cos0)
"~ sin260  (1-cos26) (1—cos20)

_ 2 or -2
" 1+cosO 1—cos@

2
1+cosf

For simplicity, we can require r > 0, so that r =

[ can be written as———— = ——=: thus the angle is
1—cos6 1+cos(t—60)  1+cos(8-m)’ g

changed by half a revolution, which balances the change of sign, to
give the same point]

Also, stationary values of r can be investigated:

2—; = —2(1 + cosB)"%(—sinh)

Z—;=O=> 6 =0 (butnotn)=>r=1

16
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(then we could consider the sign of d—eg to verify that there is a

minimum atr = 1)

(14) Example: Find the Cartesian equation of the curve r = 2cos6
x =rcos@, y =rsinf

= x = 2c0s%0, y = 2cos0sind

= y2 = 4c0s%0(1 — cos?0) = x(2 — x) = 2x — x?

= x2+y?2-2x=0>(x—-1)2+y2=1

17



(15) Area enclosed by a curve

Referring to the diagram, the area of infinitesimal sector

= ~(50)r

- 1 g1 2 _ (Pl 2
Hence required area = slér—r}o e - (60)r- = fa 4 do

(16) Example: Find the area enclosed by

r =1+ sinf above the x axis

18
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Area = fon% (1 + sinB)?do = %f: 1+ 2sinf + sin?0 do

= %fon 1+ 2sinf + % (1 — cos26) do

T
0

=1 [39_ 2cosf — sin26
: |3 ]

1.3

= {5 +2-01-[0-2-0])

=2 42
4

Note: Unlike ordinary integration to find the area under a curve,
for polar curves we don't need to worry about areas under the

X axis contributing negative amounts (and therefore having to be
dealt with separately).

19



(17) Tangents to Curves

Consider r = 2cos6
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X = rcoso :
y = rsinf
dy _ dy/de
dx  dx/do
. dy
horizontal tangent = 5= 0
. dx
vertical tangent = == 0 i

x = rcosfd = 2cos?%6

y = rsinfd = sin20

Exercise: Find where the tangents are horizontal and vertical.

Solution

r = 2c0s0 : x = rcosf = 2cos?0 : y =rsinf = sin20

d . d
=X = 2¢0s20 ; horizontal tangent = 2=
de de
mw 3w 5m 7m
= 29 el A T R
2’2’2 2
mw 3w 5m 71
=0 = Ty T
4’ 4’ 4’ 4
dx . .
== 4cosO(—sinf) = —2sin26

: d
vertical tangent = £ =0

=20 =0,m,2m, 31

20
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(18) To express equations of tangents in polar form

Horizontal tangent (6 = %)

y=a&y=rsinf = rsinf = a = r = acosect

r=2c059;9=%=>r=2(%)=\/§

SoV2Z=<=a=1

&
Eq'n of tangent is r = cosecf
[Check: goes through (0,1)]
Exercise: Find eq'n of vertical tangent when 8 = 0
Solution
x=a&x =rcosd = rcosd =a=r = asect
r=2c0s0;0=0=>r=2(1) =2
So2=a(l)=>a=2

Eq'n of tangent is r = 2secf

21



