Parametric Equations (7 pages; 5/5/21)

Methods for converting from parametric to Cartesian form
(a) Make t the subject of one of the equations for x or y, and substitute for t in the other equation.
(b) Combine the equations for $x \& y$ in some way, so as to make t the subject (as in (i)).
(c) Make $f(t)$ the subject of both of the equations for $x \& y$, and equate the two expressions (as in (ii), with $f(t)=t^{2}$), leaving perhaps a single t in the resulting equation.

Examples

(i) $x=3 \cos \theta, y=2 \sin \theta$

Cartesian form: $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1$ (ellipse)

(ii) $x=3 t^{2}, y=6 t$

Cartesian form: $y^{2}=12 x=4(3) x$; parabola with focus at $(3,0)$

(iii) $x=t+\frac{1}{t}, y=t-\frac{1}{t}$

Cartesian form:
$x+y=2 t ; x-y=\frac{2}{t}$
$\Rightarrow(x+y)(x-y)=4$
$\Rightarrow \frac{x^{2}}{2^{2}}-\frac{y^{2}}{2^{2}}=1 \quad$ (rectangular hyperbola)

(iv) $x=2 t, y=\frac{2}{t}$

Cartesian form: $x y=4$ (rectangular hyperbola, with asymptotes being x and y axes)

(v) $x=2 t, y=\frac{1}{t^{2}}$

Cartesian form: $x^{2}=\frac{4}{y} \Rightarrow y=\frac{4}{x^{2}}$

(vi) $x=t^{2}, y=t^{3}$

Cartesian form: $x^{3}=y^{2}$

(vii) $x=\frac{t}{1+t}, y=\frac{t}{1-t}$

Cartesian form: $x y=\frac{t^{2}}{1-t^{2}} ; y-x=\frac{2 t^{2}}{1-t^{2}}$
$\Rightarrow y-x=2 x y \Rightarrow y(1-2 x)=x$
$\Rightarrow y=\frac{x}{1-2 x}$

(viii) $x=\frac{t}{3-t}, y=\frac{t^{2}}{3-t}$

Cartesian form: $\frac{y}{x}=t \Rightarrow x=\frac{\left(\frac{y}{x}\right)}{3-\frac{y}{x}}=\frac{y}{3 x-y}$
$\Rightarrow 3 x^{2}-x y=y \Rightarrow y(1+x)=3 x^{2}$
$\Rightarrow y=\frac{3 x^{2}}{1+x}$

