Parabolas Q1 [4 marks] (29/5/21)

Exam Boards

OCR:-
MEI:
AQA: -
Edx: Further Pure 1 (Year 1)

Using the parametric equations of a parabola ($x=a t^{2}, y=2 a t$), show that the midpoints of chords of a parabola that have the same direction lie on a straight line parallel to the x-axis.
[A chord of a parabola joins two points on the parabola.]
[4 marks]

Using the parametric equations of a parabola ($x=a t^{2}, y=2 a t$), show that the midpoints of chords of a parabola that have the same direction lie on a straight line parallel to the x-axis.
[A chord of a parabola joins two points on the parabola.] [4 marks]

Solution

Let points P and Q on the parabola have parameters $t_{1} \& t_{2}$.
The chord PQ has gradient $\frac{2 a t_{2}-2 a t_{1}}{a t_{2}{ }^{2}-a t_{1}{ }^{2}}=\frac{2\left(t_{2}-t_{1}\right)}{t_{2}{ }^{2}-t_{1}{ }^{2}}=\frac{2}{t_{1}+t_{2}}$, and we are told that this is constant. [2 marks]

The y-coordinate of the midpoint of PQ is $\frac{1}{2}\left(2 a t_{1}+2 a t_{2}\right)=$ $a\left(t_{1}+t_{2}\right)$, [1 mark]
which is constant, as $\frac{2}{t_{1}+t_{2}}$ and therefore $t_{1}+t_{2}$ are constant, giving the required result. [1 mark]

