Parabolas Overview (30/5/21)

Q1 [4 marks]

Using the parametric equations of a parabola ($x=a t^{2}, y=2 a t$), show that the midpoints of chords of a parabola that have the same direction lie on a straight line parallel to the x-axis.
[A chord of a parabola joins two points on the parabola.]

Q2 [Problem/H]

A ray (eg of light) travels on a path parallel to the x-axis and hits the surface of the parabola $y^{2}=4 a x$ at the point $\mathrm{P}\left(a t^{2}, 2 a t\right)$. The angle between the incoming ray and the normal at P is α. It can be assumed that the angle that the reflected ray makes with the normal is also α.

Q3 [15 marks]

Suppose that $P\left(a p^{2}, 2 a p\right)$ and $Q\left(a q^{2}, 2 a q\right)$ are two points on the parabola $y^{2}=4 a x$, such that the chord $P Q$ passes through the focus of the parabola.
(i) Show that $p q=-1$. [7 marks]
(ii) Show that the tangents at P and Q meet on the directrix.
[The equations of the tangents can be quoted without proof.]
[3 marks]
(iii) Show that the locus of the midpoint of $P Q$ is a parabola, and establish its focus and directrix. [5 marks]

Q4 [5 marks]

If the tangents to a parabola at P and Q are perpendicular, show that the chord PQ passes through the focus S of the parabola.
[The equation of the tangent can be used without proof.]

Q5 [Problem/H]

Find the cartesian equations of the parabolas with:
(i) focus $(4,4)$ and directrix $y=0$
(ii) focus $(1,1)$ and directrix $x+y+2=0$

