Oblique Impact with Plane - Exercises (2/3/19)

Referring to the diagram above,

(1) Find an expression for $tan\phi$ in terms of $tan\theta$ and e.

(2) Find an expression for v in terms of u, θ and e

(i) involving $cos\theta$ and $sin\theta$

(ii) involving $tan\theta$

(3) When $\theta = 60^{\circ}$ and $e = \frac{1}{\sqrt{3}}$, find ϕ , and v (in terms of u).

(4) What relation must hold between $tan\theta$ and e, in order for the outgoing path to be perpendicular to the incoming path?

(5) For the same situation, express v in terms of u and e.

(6) For the same situation, what is the smallest possible value for θ ?

Solutions

(1) $vcos\phi = ucos\theta$ (A) and $vsin\phi = esin\theta$ (B) Dividing (B) by (A), $etan\theta = tan\phi$

(2)(i)
$$(A)^{2} + (B)^{2} \Rightarrow v^{2}(\cos^{2}\phi + \sin^{2}\phi) = u^{2}(\cos^{2}\theta + e^{2}\sin^{2}\theta),$$

so that $v = u\sqrt{\cos^{2}\theta + e^{2}\sin^{2}\theta}$
(ii) $v = u\sqrt{\cos^{2}\theta + e^{2}\sin^{2}\theta} = u\sqrt{\frac{1+e^{2}\tan^{2}\theta}{\sec^{2}\theta}}$
 $= u\sqrt{\frac{1+e^{2}\tan^{2}\theta}{1+\tan^{2}\theta}}$

(3) When
$$\theta = 60^{\circ}$$
 and $e = \frac{1}{\sqrt{3}}$,
 $tan\phi = etan\theta = \frac{1}{\sqrt{3}}$. $\sqrt{3} = 1$, so that $\phi = 45^{\circ}$
And $v = u\sqrt{\frac{1+e^2tan^2\theta}{1+tan^2\theta}} = u\sqrt{\frac{1+tan^2\phi}{1+tan^2\theta}} = u\sqrt{\frac{1+1}{1+3}} = \frac{u}{\sqrt{2}}$

(4) If
$$\theta + \phi = 90^{\circ}$$
, $tan\phi = etan\theta$ and $tan\phi = tan(90^{\circ} - \theta)$
= $cot\theta = \frac{1}{tan\theta}$
Hence $etan\theta = \frac{1}{tan\theta}$, so that $tan^2\theta = \frac{1}{e}$ and $tan\theta = \frac{1}{\sqrt{e}}$

(5)
$$v = u \sqrt{\frac{1+e^2 \tan^2 \theta}{1+\tan^2 \theta}} = u \sqrt{\frac{1+e^2(\frac{1}{e})}{1+\frac{1}{e}}} = u \sqrt{\frac{e+e^2}{e+1}} = u \sqrt{e}$$

(6) $tan\theta$, and hence θ , is minimised when e is maximised; ie when e = 1 and $tan\theta = 1$, so that $\theta = 45^{\circ}$