Oblique Impact with Plane - Exercises (2/3/19)

Referring to the diagram above,
(1) Find an expression for $\tan \phi$ in terms of $\tan \theta$ and e.
(2) Find an expression for v in terms of u, θ and e
(i) involving $\cos \theta$ and $\sin \theta$
(ii) involving $\tan \theta$
(3) When $\theta=60^{\circ}$ and $e=\frac{1}{\sqrt{3}}$, find ϕ, and v (in terms of u).
(4) What relation must hold between $\tan \theta$ and e, in order for the outgoing path to be perpendicular to the incoming path?
(5) For the same situation, express v in terms of u and e.
(6) For the same situation, what is the smallest possible value for θ ?

Solutions

(1) $v \cos \phi=u \cos \theta(\mathrm{~A})$ and $v \sin \phi=e \sin \theta$ (B)

Dividing (B) by (A), $\operatorname{etan} \theta=\tan \phi$
(2)(i) $(A)^{2}+(B)^{2} \Rightarrow v^{2}\left(\cos ^{2} \phi+\sin ^{2} \phi\right)=u^{2}\left(\cos ^{2} \theta+e^{2} \sin ^{2} \theta\right)$, so that $v=u \sqrt{\cos ^{2} \theta+e^{2} \sin ^{2} \theta}$
(ii) $v=u \sqrt{\cos ^{2} \theta+e^{2} \sin ^{2} \theta}=u \sqrt{\frac{1+e^{2} \tan ^{2} \theta}{\sec ^{2} \theta}}$
$=u \sqrt{\frac{1+e^{2} \tan ^{2} \theta}{1+\tan ^{2} \theta}}$
(3) When $\theta=60^{\circ}$ and $e=\frac{1}{\sqrt{3}}$,
$\tan \phi=e \tan \theta=\frac{1}{\sqrt{3}} \cdot \sqrt{3}=1$, so that $\phi=45^{\circ}$
And $v=u \sqrt{\frac{1+e^{2} \tan ^{2} \theta}{1+\tan ^{2} \theta}}=u \sqrt{\frac{1+\tan ^{2} \phi}{1+\tan ^{2} \theta}}=u \sqrt{\frac{1+1}{1+3}}=\frac{u}{\sqrt{2}}$
(4) If $\theta+\phi=90^{\circ}, \tan \phi=$ etan θ and $\tan \phi=\tan \left(90^{\circ}-\theta\right)$
$=\cot \theta=\frac{1}{\tan \theta}$
Hence $\operatorname{etan} \theta=\frac{1}{\tan \theta}$, so that $\tan ^{2} \theta=\frac{1}{e}$ and $\tan \theta=\frac{1}{\sqrt{e}}$
(5) $v=u \sqrt{\frac{1+e^{2} \tan ^{2} \theta}{1+\tan ^{2} \theta}}=u \sqrt{\frac{1+e^{2}\left(\frac{1}{e}\right)}{1+\frac{1}{e}}}=u \sqrt{\frac{e+e^{2}}{e+1}}=u \sqrt{e}$
(6) $\tan \theta$, and hence θ, is minimised when e is maximised; ie when $e=1$ and $\tan \theta=1$, so that $\theta=45^{\circ}$

