(1) Reasons why approximations or errors might occur

- simplifying assumptions (eg gravity doesn't vary with height)
- problem with obtaining accurate measurements (technical/cost/effort)
- rounding errors (increasing with the number of calculations); unable to process large numbers of dps
- subtracting nearly equal quantities
- 'ill-conditioned' problems, where a small change in the input value can cause a large change in the output value

(2) Error terminology

Example

Exact value $=1.512(x)$
[In practice, the exact value is likely to be an irrational number, rather than a terminating decimal.]

Approximate value $=1.5(X)(\mathrm{eg} 1.512$ rounded to 1 dp or 2 sf$)$
(Absolute) Error $=X-x=1.5-1.512=-0.012$
Note: Some textbooks define the Error to be $x-X$

Relative Error $=\frac{x-x}{x}=\frac{-0.012}{1.512}=-0.00794(3$ sf $)($ provided $x \neq 0)$

Note: Use of the term 'absolute' has traditionally meant taking the modulus of something; so that "the absolute value of x " means $|x|$. With the MEI 2017 specification, however, it has been decided to use "absolute error" to mean "error", as opposed to "relative error". $|X-x|$ and $\left|\frac{X-x}{x}\right|$ used to be referred to as the absolute error and absolute relative error, respectively.

Percentage error $=\frac{X-x}{x} \times 100=0.794 \%$

(3) Obtaining a rounded value from an interval

Example

If $0.9876<x<0.9888$, give x to the highest possible number of dps
$\Rightarrow \quad x=1.0$ to 1 dp

$$
x=0.99 \text { to } 2 \mathrm{dp}
$$

but from 0.988 to 0.989 to 3dp
So value of x to highest possible number of dps is 0.99 to 2 dp
(4) Obtaining an interval estimate from a rounded value Example
$\mathrm{X}=12300(3 \mathrm{sf}) \Rightarrow 12250 \leq x<12350$
whilst $\mathrm{X}=12300(4 \mathrm{sf}) \Rightarrow 12295 \leq x<12305$
(5) Errors associated with rounding
(i) Maximum possible error that can occur when rounding to 1 dp Example
eg $X=1.2 \Rightarrow 1.15 \leq x<1.25$
\Rightarrow max. possible error $=0.05$
(ii) Maximum possible error that can occur when rounding to 1 sf: no limit! (eg $x=12300000000, X=10000000000)$

(6) Size of relative error

Example

If $2.36<x<2.58$, then $X=2.47$ minimises the error
The relative error will be greatest when the denominator is smallest:
so $\frac{0.11}{2.36}=0.0466(3 \mathrm{sf})$ is the upper limit for the relative error
(7) Accuracy of answers when carrying out arithmetic
(i) Example: If $x=1.2$ to 1 dp and $y=3.47$ to 2 dp , find an interval estimate for $x+y$

To what accuracy can a single value for $x+y$ be quoted?

Solution

The smallest possible value for $x+y$ is $1.15+3.465=4.615$
The largest possible value for $x+y$ is $<1.25+3.475=4.725$
Thus the interval estimate is $[4.615,4.725)$
$4.615 \& 4.725$ both round to 5 , so value is 5 to 0 dp
(ii) Example: If $x=1.2$ to 1 dp and $y=3.47$ to 2 dp , find an interval estimate for $y-x$. To what accuracy can a single value for $y-x$ be quoted?

Solution

Smallest possible value for $y-x$ is $3.465-1.25=2.215$
Largest possible value for $y-x$ is $3.475-1.15=2.325$
Interval estimate is $(2.215,2.325)$
$2.215,2.325$ both round to 2 , so value is 2 to 0 dp
(iii) Example: To how many dps is it safe to quote the result of the following addition?
$1.36587+1.29166+1.32441$
(where each number has been rounded to 5 dp)

Solution

Min. $=1.365865+1.291655+1.324405=3.981925$
Max. $=1.365875+1.291665+1.324415=3.981955$
$5 \mathrm{dp}:(3.98193,3.98196)$
$4 \mathrm{dp}:(3.9819,3.9820)$
$3 \mathrm{dp}:(3.982,3.982)$
(iv) Example: To how many dps is it safe to quote $\frac{4.78256}{2.19982}$?
(where each number has been rounded to 5dp)

Solution

Min. $=\frac{4.782555}{2.199825}=2.1740616$

Max. $=\frac{4.782565}{2.199815}=2.1740760$
$5 \mathrm{dp}:(2.17406,2.17408)$
4 dp: $(2.1741,2.1741)$

(8) Propagation of relative errors

(i) Let x be approximated by X and y be approximated by Y

Then relative error iro (in respect of) x is $r_{x}=\frac{X-x}{x}$ and $r_{y}=\frac{Y-y}{y}$
Then relative error iro $x y$ is $r_{x y}=\frac{x Y-x y}{x y}$
Result to prove: $r_{x y} \approx r_{x}+r_{y}$
$r_{x}+r_{y}=\frac{X-x}{x}+\frac{Y-y}{y}=\frac{X y-x y+x Y-x y}{x y}=\frac{X Y-x y}{x y}+\frac{-X Y+X y+x Y-x y}{x y}$
2nd term $=\frac{X(y-Y)+x(Y-y)}{x y}=\frac{(X-x)(y-Y)}{x y}=-r_{x} r_{y}$
As $r_{x} r_{y}$ is small compared to r_{x} and $r_{y}, r_{x}+r_{y} \approx r_{x y}$

(ii) Example

If $x=1.414214$ is rounded to $X=1.414$ and
$y=1.732051$ is rounded to 1.732 , what will be the approximate relative error in $x y$ if it is rounded to $X Y$?

Compare it to the actual value.

Solution

$r_{x y} \approx r_{x}+r_{y}=\frac{1.414-1.414214}{1.414214}+\frac{1.732-1.732051}{1.731051}$
$=-0.0001513-0.0000295=-0.0001808$
Actual $r_{x y}=\frac{2.449048-2.449490773}{2.449490773}=-0.0001808(4 s f)$
(iii) Exercise: Find an expression for $r_{\frac{x}{y}}$

Hint: $r_{x y} \approx r_{x}+r_{y} \Rightarrow r_{x y}-r_{x} \approx r_{y}$

Solution

Let $z=x y$, so that $y=\frac{z}{x}$
Then $r_{z}-r_{x} \approx r_{\bar{z}}$
Re-labelling: $r_{\frac{x}{y}} \approx r_{x}-r_{y}$
Note: r_{y} could be -ve
(iv) Example: Compare the estimated and actual values of $r_{\frac{x}{y}}$
when $x=1.414214$ is rounded to $X=1.414$ and $y=1.732051$ is rounded to $Y=1.732$ (as before).

$$
\begin{aligned}
& r_{\frac{x}{y}} \approx r_{x}-r_{y}=\frac{1.414-1.414214}{1.414214}-\frac{1.732-1.732051}{1.731051} \\
&=-0.0001513-(-0.0000295)=-0.0001218
\end{aligned}
$$

Actual $r_{\bar{x}}=\frac{0.816397229-0.816496743}{0.816496743}=-0.000121879$
(v) Also, it can be shown that $\left|r_{x y}\right| \approx\left|r_{x}\right|+\left|r_{y}\right|$
and $\left|r_{\frac{x}{y}}\right| \approx\left|r_{x}\right|+\left|r_{y}\right|$
(9) Changing the order of a sequence of operations
$(83+55) \times 39=5382$
If a computer rounds everything to 2 sf :
(A) $(83+55) \times 39$

Step 1: $83+55=138$, which rounds to 140

Step 2: $140 \times 39=5460$, which rounds to 5500
(B) $(83 \times 39)+(55 \times 39)$

Step 1: $83 \times 39=3237$, which rounds to 3200
Step 2: $55 \times 39=2145$, which rounds to 2100
Step 3: $3200+2100=5300$
Unrounded: 5382 (A) 5500 (B) 5300
(10) Subtraction involving numbers of a similar size
(i) What number of sig. figs could be quoted for

467219 - 203426? (both to 6sf)
Smallest possible value is $467218.5-203426.5=263792$
Largest possible value is $467219.5-203425.5=263794$
So 263790 to 5 sf
(ii) What number of sig. figs could be quoted for
452.683-452.872? (both to 6sf)

Smallest possible value is 452.8715-452.6835 $=0.1880$
Largest possible value is $452.8725-452.6825=0.1900$
So 0.19 (2dp)
So the number of sig. figs is reduced considerably if the numbers are nearly equal.

(11) 'Ill-conditioned' problems

This is where a small change in the value input results in a large change in the value output
(i) Example

If the discriminant of the quadratic equation
$a x^{2}+b x+c=0$ is close to 0,
then a small change in one of a, b or c could result in a change from two solutions to no solutions.

(ii) Example

The point of intersection of the lines $y=2 x+1$ and $y=$ $2.01 x+9$ will be affected significantly if the gradient of the 2 nd line is increased to 2.02
original point is given by:
$2 x+1=2.01 x+9 \Rightarrow x=\frac{1-9}{0.01}=-800$
new point is given by:
$2 x+1=2.02 x+9 \Rightarrow x=\frac{1-9}{0.02}=-400$
[In such cases, the effects of rounding approximations will be greater; so include extra figures.]

(iii) Error in a function

Let $X=x+h$ be an estimate for x, so that the error is h.
Then the error in $f(x)$ is $f(x+h)-f(x)$.
Now, $f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}$, so that
$f(x+h)-f(x) \approx f^{\prime}(x) h$
ie the error is magnified by $f^{\prime}(x)$

(12) Other rounding issues

(i) Premature rounding (using a rounded figure in a calculation, when a more accurate figure could have been used instead)
(ii) The following 'progressive rounding' shouldn't be applied:
$1.23456 \rightarrow 1.2346 \rightarrow 1.235 \rightarrow 1.24$
(iii) 'Chopping': $1.23456 \rightarrow 1.234$ (to be avoided in manual calculations, but may occur with computers)

(13) Exercise

If a measurement of 240 is taken and the $\%$ error is revealed to be no more than 5%, find an interval estimate for the exact length.

$$
X=240 \& 100\left|\frac{X-x}{x}\right| \leq 5
$$

[as the \% error could be negative]

$$
\Rightarrow-0.05 \leq \frac{240-x}{x} \leq 0.05
$$

$\Rightarrow(1)-0.05 x \leq 240-x($ as $x>0)$
$\Rightarrow 0.95 x \leq 240 \Rightarrow x \leq 252.63(2 d p)$
\& (2) $240-x \leq 0.05 x$
$\Rightarrow 240 \leq 1.05 x$
$\Rightarrow x \geq 228.57(2 d p)$
Thus interval estimate is: $228.57 \leq x \leq 252.63$

(14) Exercise

A length is measured as 40.237 m . If the absolute size of the relative error is no more than 0.05 , what is the greatest possible absolute size of the absolute error, to 2 dp ?

Solution

Let x be the true value.
Then $\left|\frac{40.237-x}{x}\right| \leq 0.05$, so that $-0.05 \leq \frac{40.237-x}{x} \leq 0.05$
$\Rightarrow x(1-0.05) \leq 40.237$ and $40.237 \leq x(1+0.05) \quad($ as $x>0)$
$\Rightarrow x \leq 42.35474$ and $x \geq 38.32095$ (5dp)
If $x=38.32095$, then absolute error is $40.237-38.32095=$ 1.91605

If $x=42.35474$, then absolute error is $40.237-42.35474=$ -2.11774

So the greatest possible absolute size of the absolute error is
2.11774 or 2.12 (2dp).

