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Numerical Integration (20 pages; 31/3/20)    
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[Note: Because the expression 'absolute error' is now used to 

mean 𝑥 − 𝐴 (where 𝑥 is the observed value and 𝐴 is the actual (ie 

true) value), as opposed to the 'relative error'  
𝑥−𝐴

𝐴
), I will use 

'absolute size' of 𝑦 to indicate |𝑦|. However, this isn't a standard 

expression.] 

 

(A) Midpoint rule (aka the mid-ordinate rule) 

(1) 𝑀𝑛 approximates the area under the curve by the sum of the 

areas of 𝑛 rectangles, where the height of each rectangle is 

determined by the value of the function at the midpoint of the 

rectangle. This is shown below for 𝑛 = 1, 2 & 3. 

Example: ∫
1

𝑥
 𝑑𝑥

2

1
 

Exact value = [𝑙𝑛𝑥]
2
1

= 𝑙𝑛2 − 𝑙𝑛1 = 𝑙𝑛2 = 0.69315 (5dp) 
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𝑀1 =  
1

1.5
 × 1  = 0.66667 

 

 

 

𝑀2 = (
1

1.25
+  

1

1.75
) × 0.5 = 0.68571 

𝑀3 = (
1

7
6⁄

+  
1

9
6⁄

+
1

11
6⁄
) ×

1

3
 = 0.68975  
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(2) The general formula is 

  𝑀𝑛 = ℎ(𝑓0.5 +  𝑓1.5 +  … +  𝑓𝑛−0.5), 

where ℎ is the width of each rectangle. 

 

(B) Trapezium rule 

(1) 𝑇𝑛 approximates the area under the curve by the sum of the 

areas of 𝑛 trapezia, where the sides of each trapezium are the 

values of the function. This is shown below for 𝑛 = 1, 2 & 3 (for 

the same example as for the midpoint rule, where the exact value 

was 0.69315). 

 

 

𝑇1 =
1

2
 (

1

1
+  

1

2
 ) × 1 = 0.75 
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𝑇2 =
1

2
(

1

1
+

1

1.5
) × 0.5 +

1

2
(

1

1.5
+

1

2
) × 0.5  

=
1

2
 [

1

1
+  

1

2
+ 2 (

1

1.5
)] = 0.70833  

𝑇3 =
1

2
 (

1

1
+  

1

2
+ 2 (

1
4

3⁄
+

1
5

3⁄
)) ×

1

3
 = 0.7 

 

(2) The general formula is 

  𝑇𝑛 = 
1

2
ℎ { 𝑓0+𝑓𝑛 + 2(𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1)}, 

where ℎ is the width of each trapezium. 
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(C) Connections between the Trapezium and Midpoint rules 

(1) It can be shown that  𝑇2𝑛 = ½ (𝑇𝑛 +  𝑀𝑛)  

Proof 

Let 𝑊 be the width of the interval being considered. 

As  𝑇𝑛 = 
1

2
ℎ { 𝑓0+𝑓𝑛 + 2(𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1)}, 

𝑇2𝑛 = 
1

2
(

𝑊

2𝑛
) { 𝑓0+𝑓2𝑛 + 2(𝑓1 + 𝑓2 + ⋯ + 𝑓2𝑛−1)} 

(noting that 𝑓1, 𝑓2 etc are now defined differently). 

Using the definitions of 𝑓1, 𝑓2 that appear in 𝑇2𝑛, 

𝑇𝑛 becomes  
1

2
(

𝑊

𝑛
) { 𝑓0+𝑓2𝑛 + 2(𝑓2 + 𝑓4 + ⋯ + 𝑓2𝑛−2)}. 

Also, 𝑀𝑛 becomes (
𝑊

𝑛
) (𝑓1 +  𝑓3 +  … +  𝑓2𝑛−1), 

and so 𝑇𝑛 +  𝑀𝑛 =
1

2
(

𝑊

𝑛
) {𝑓0+𝑓2𝑛 + + 2(𝑓2 + 𝑓4 + ⋯ + 𝑓2𝑛−2) 

+2(𝑓1 +  𝑓3 +  … +  𝑓2𝑛−1)} 

= 2𝑇2𝑛, as required.  

 

(2) Exercise: Demonstrate that 𝑇4 = ½ (𝑇2 +  𝑀2)  

Solution 
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𝑇2 =
1

2
(2ℎ)(𝑓0 + 2𝑓2 + 𝑓4)  

𝑀2 = (2ℎ)(𝑓1 + 𝑓3)  

⇒
1

2
(𝑇2 +  𝑀2) =

1

2
ℎ([𝑓0 + 2𝑓2 + 𝑓4] + [2𝑓1 + 2𝑓3])  

=
1

2
ℎ(𝑓0 + 2[𝑓1 + 𝑓2 + 𝑓3] + 𝑓4) = 𝑇4  

 

(3) Comparison of values from Trapezium & Midpoint rules (from 

the earlier example of 𝑦 =
1

𝑥
 ) 

𝑛 𝑇𝑛 𝑀𝑛 𝑇𝑛 − 𝐴

𝐴
× 100% 

𝑀𝑛 − 𝐴

𝐴
× 100% 

A(actual) 0.69315 0.69315   
1 0.75 0.66667 8.202% −3.820% 
2 0.70833 0.68571 2.190% −1.073% 
3 0.7 0.68975 0.988% −0.491% 

 

 

(4) In the table above, the 𝑇𝑛 fall towards the actual value, whilst 

the 𝑀𝑛 rise. 𝑦 =
1

𝑥
 is an example of a convex function. The diagram 

below shows the Midpoint and Trapezium rules being applied to a 

general convex function. 

[A convex function is one such as 𝑦 = 𝑒𝑥  (think of  conv𝑒𝑥), whilst 

a concave function is one such as 𝑦 = −𝑥2. (See "Convexity and 

concavity" note.)] 
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For a convex function, 𝑀𝑛 < 𝐴 <  𝑇𝑛, 

where A is the actual value of the area under the curve. 

𝐴 <  𝑇𝑛 is clear from the diagram 

To see why 𝑀𝑛 < 𝐴, we draw the tangent to the curve at the 

midpoint  C (the line BCD in the diagram). As the function is 

convex, the curve lies above the tangent on both sides of C, so that 

the trapezium BCDEFG has an area smaller than A. This trapezium 

has the same area as the rectangle in the mid-point rule, with base 

GE and height FC. 

As the number of strips is increased, the 𝑀𝑛 will approach 𝐴 from 

below, whilst the 𝑇𝑛 will approach 𝐴 from above. An interval 

estimate is also provided by  (𝑀𝑛, 𝑇𝑛). 

Similarly for a concave function, 𝑇𝑛 < 𝐴 < 𝑀𝑛.  

In practice, a curve may need to be split up into convex and 

concave parts. 

 

(5) In the table above, the absolute size of the relative error for 𝑇𝑛  

is seen to be approximately twice that for 𝑀𝑛; 
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ie  |
𝑇𝑛−𝐴

𝐴
× 100| ≈ 2 |

𝑀𝑛−𝐴

𝐴
× 100| 

This leads to: |𝑇𝑛 − 𝐴|≈ 2|𝑀𝑛 − 𝐴| 

For a convex function, 𝑇𝑛 − 𝐴 ≈ 2(𝐴 − 𝑀𝑛) 

and for a concave function, 𝐴 − 𝑇𝑛 ≈ 2(𝑀𝑛 − 𝐴) 

 

Proof for the concave case (where 𝑻𝒏 < 𝑨 < 𝑴𝒏) 

𝑇2𝑛 = ½ (𝑇𝑛 +  𝑀𝑛)   and  𝑇2𝑛 − 𝐴 ≈
1

4
(𝑇𝑛 − 𝐴) 

so that  ½ (𝑇𝑛 +  𝑀𝑛) − 𝐴 ≈
1

4
(𝑇𝑛 − 𝐴)    

⇒  2𝑇𝑛 +  2𝑀𝑛 − 4𝐴 ≈ 𝑇𝑛 − 𝐴 

⇒  𝑇𝑛 − 𝐴 ≈ 2𝐴 − 2𝑀𝑛 

⇒  𝐴 − 𝑇𝑛 ≈ 2(𝑀𝑛 − 𝐴) 

 

(D) Simpson's Rule 

(1) Given a number of points on the curve, Simpson's rule is 

derived by fitting a series of overlapping quadratic curves to the 

points.  (Note that, unless they lie on a straight line, a quadratic 

curve can be found that passes through any 3 points.) 
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[Note: The diagram doesn't show the original curve; just the 

points on it and the quadratic curves fitted to those points.] 

Referring to the diagram above, if 𝑦0, 𝑦1, … , 𝑦6 are the given 

𝑦 values (or 'ordinates'), then the first quadratic curve is fitted to 

the points (𝑥0, 𝑦0), (𝑥1, 𝑦1) & (𝑥2, 𝑦2); the second quadratic curve 

is fitted to the points (𝑥2, 𝑦2), (𝑥3, 𝑦3) & (𝑥4, 𝑦4) , and so on. 

Integration is then used to find the areas under the quadratic 

curves, and these are added to give the final formula, which for 

the above example is: 

𝑆6 =
ℎ

3
(𝑦0 + 𝑦6 + 4(𝑦1 + 𝑦3 + 𝑦5) + 2(𝑦2 + 𝑦4) )   

(to be proved shortly) 

 

Notes 

(i) This is the notation that is now used in the MEI exams. The 6 in 

𝑆6 is the number of strips. In an alternative notation, 𝑆3 is written 

instead of 𝑆6. (With the 𝑆3 notation, the formula 𝑆3 =
2𝑀3+𝑇3

3
 is 

obtained (see below), as opposed to 𝑆6 =
2𝑀3+𝑇3

3
 under the new 

MEI notation.) For Edexcel and AQA, it would seem that the 𝑆𝑛 
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and 𝑆2𝑛 notations are avoided (instead they say, for example, "Use 

Simpson's rule with 8 strips"). 

(ii) The quadratic functions can be found by either Newton's 

Forward Difference method or Lagrange's method (see separate 

notes). 

 

(2) Proof 

 

Let the quadratic function in the above diagram be 

𝑦 = 𝑝𝑥2 + 𝑞𝑥 + 𝑏  

The area under the curve is ∫ 𝑝𝑥2 + 𝑞𝑥 + 𝑏 𝑑𝑥
ℎ

−ℎ
 

= [
𝑝𝑥3

3
+

𝑞𝑥2

2
+ 𝑏𝑥]

ℎ
 

−ℎ
=  

2𝑝ℎ3

3
+ 2𝑏ℎ     (1) 

Also 𝑝ℎ2 − 𝑞ℎ + 𝑏 = 𝑎  (2)  and  𝑝ℎ2 + 𝑞ℎ + 𝑏 = 𝑐   (3) 

Adding (1) & (2) gives   2𝑝ℎ2 + 2𝑏 = 𝑎 + 𝑐  (4) 

Then from (1) & (4), 

Area =
ℎ

3
(𝑎 + 𝑐 − 2𝑏 + 6𝑏) =

ℎ

3
(𝑎 + 4𝑏 + 𝑐)  
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For 3 quadratic curves, the area is therefore 

𝑆6 =
ℎ

3
([𝑦0 + 4𝑦1 + 𝑦2] + [𝑦2 + 4𝑦3 + 𝑦4] + [𝑦4 + 4𝑦5 + 𝑦6])  

=
ℎ

3
(𝑦0 + 𝑦6 + 4(𝑦1 + 𝑦3 + 𝑦5) + 2(𝑦2 + 𝑦4) ) , as required. 

 

(3) This extends to the following general formula: 

 𝑆2𝑛 =
1

3
 ℎ{ 𝑓0+𝑓2𝑛 + 4(𝑓1 + 𝑓3 + ⋯ + 𝑓2𝑛−1) 

+2(𝑓2 + 𝑓4 + ⋯ + 𝑓2𝑛−2)} , 

where the odd ordinates are multiplied by 4, and the even ones 

(except the first and last) are multiplied by 2. 
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(E) Connections between Simpson's rule  and the Trapezium and 

Midpoint rules 

(1) 𝑆2𝑛 =
2𝑀𝑛+𝑇𝑛

3
   

This result is not approximate. In practice, it will usually be more 

convenient to find 𝑆2𝑛 in this way, rather than from the basic 

definition.  

Demonstration for 𝑆6: 

 

 

 

 

 

 

 

 

We are dealing with 3 trapezia and 3 rectangles here, with bases 

of 2ℎ: 

𝑇3 =
2ℎ

2
(𝑦0 + 𝑦6 + 2(𝑦2 + 𝑦4))  

𝑀3 = 2ℎ(𝑦1 + 𝑦3 + 𝑦5)  

 

So  
2𝑀3+𝑇3

3
=

ℎ

3
(4(𝑦1 + 𝑦3 + 𝑦5) + (𝑦0 + 𝑦6 + 2(𝑦2 + 𝑦4))) 

=
ℎ

3
(𝑦0 + 𝑦6 + 4(𝑦1 + 𝑦3 + 𝑦5) + 2(𝑦2 + 𝑦4) ) = 𝑆6  
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(2) It was seen earlier that the absolute size of the relative error 

for 𝑇𝑛 is approximately twice that for 𝑀𝑛.  This is consistent with 

the formula 𝑆2𝑛 =
2𝑀𝑛+𝑇𝑛

3
 : 𝑆2𝑛 is more accurate than the other 

two methods (with the quadratic function producing a better fit), 

and can therefore be taken to be approximately equal to A, the 

actual value. Then, from the formula, A is approximately the given 

weighted average of 𝑀𝑛 and 𝑇𝑛 (see diagram below), with 

 𝑇𝑛 − 𝐴 ≈ 2(𝐴 − 𝑀𝑛) (if  𝑇𝑛 > 𝑀𝑛). 

 

 

Thus 𝑀𝑛 is more accurate than 𝑇𝑛, and 𝑆2𝑛 is more accurate than 

𝑀𝑛. 

 

(3) Exercise 

Show that 𝑆4 =
2𝑀2+𝑇2

3
 , from the basic definitions. 

Solution 
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2𝑀2+𝑇2

3
=

2

3
(2ℎ)(𝑓1 + 𝑓3) +

1

3
.

1

2
(2ℎ)(𝑓0 + 2𝑓2 + 𝑓4)    

=
ℎ

3
(4𝑓1 + 4𝑓3 + 𝑓0 + 2𝑓2 + 𝑓4)  

=
ℎ

3
(𝑓0 + 𝑓4 + 4(𝑓1 + 𝑓3) + 2𝑓2)  

= 𝑆4  

 

(4) The table below applies this relation to the 𝑦 =
1

𝑥
 example 

earlier on, and shows that the Simpson's rule estimate is much 

closer to the exact value.  
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(5) Example: ∫ √𝑠𝑖𝑛𝑥 + 1 𝑑𝑥
1

0
 

  

𝑀2 = 0.5(𝑓(0.25) + 𝑓(0.75) )  

𝑓(0.25) = √sin(0.25) + 1 = 1.11687  

𝑓(0.75) = √sin(0.75) + 1 = 1.29678  

𝑀2 = 0.5(1.11687 + 1.29678) = 1.20683  

𝑇𝑛 =
1

2
ℎ{f0+𝑓𝑛 + 2(𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1)} 

𝑇2 =
1

2
(0.5){𝑓(0) + 𝑓(1) + 2𝑓(0.5)}  

𝑓(0) = √sin(0) + 1 = 1  

𝑓(0.5) = √sin(0.5) + 1 = 1.21632  

𝑓(1) = √sin(1) + 1 = 1.35701  

𝑇2 =
1

2
(0.5){1 + 1.35701 + 2(1.21632)} = 1.19741  
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𝑆4 =
2𝑀2+𝑇2

3
=

2(1.20683 )+1.19741

3
= 1.20369  

𝑇2𝑛 =
1

2
(𝑇𝑛 +  𝑀𝑛)  

𝑇4 =
1

2
(𝑇2 +  𝑀2) =

1

2
(1.19741 + 1.20683) = 1.20212  

𝑀4 = 0.25(𝑓(0.125) + 𝑓(0.375) + 𝑓(0.625) + 𝑓(0.875 )) 

= 0.25(1.06051 + 1.16888 + 1.25901 + 1.32949)  

= 1.20447  

𝑆8 =
2𝑀4+𝑇4

3
=

2(1.20447)+1.20212

3
= 1.20369   

 

(6) 𝑆2𝑛 =
4𝑇2𝑛−𝑇𝑛

3
 

Proof 

 𝑆2𝑛 =
2𝑀𝑛+𝑇𝑛

3
  and 𝑇2𝑛 = ½ (𝑇𝑛 +  𝑀𝑛) 

⇒  𝑆2𝑛 =
2(2𝑇2𝑛−𝑇𝑛)+𝑇𝑛

3
=

4𝑇2𝑛−𝑇𝑛

3
 

  

(F) Speed of convergence 

(1) A sequence is said to have 1st order convergence if  

𝑒𝑟+1 ≈ 𝑘𝑒𝑟   (where |𝑘| < 1), where 𝑒𝑟 = 𝑥𝑟 − 𝛼  

 

2nd order convergence is when 𝑒𝑟+1 ≈ 𝑘𝑒𝑟
2 (again, with |𝑘| < 1) 

 

In the case of 1st order convergence, we can show that 

𝑥𝑟+1−𝑥𝑟

𝑥𝑟−𝑥𝑟−1
(the ′ratio of differences′)  ≈ 𝑘  
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Proof   

𝑒𝑟 = 𝑥𝑟 − 𝛼   and  𝑒𝑟+1 = 𝑥𝑟+1 − 𝛼 

𝑒𝑟 ≈ 𝑘𝑒𝑟−1 and 𝑒𝑟+1 ≈ 𝑘𝑒𝑟  

So  
𝑥𝑟+1−𝑥𝑟

𝑥𝑟−𝑥𝑟−1
=

(𝛼+𝑒𝑟+1)−(𝛼+𝑒𝑟)

(𝛼+𝑒𝑟)−(𝛼+𝑒𝑟−1)
 =

𝑒𝑟+1−𝑒𝑟

𝑒𝑟−𝑒𝑟−1
=

𝑘𝑒𝑟−𝑘𝑒𝑟−1

𝑒𝑟−𝑒𝑟−1
≈ 𝑘 

  

(2) For the Midpoint & Trapezium rules, it can be shown that the 

absolute size of the error  (ie |𝑀𝑛 − 𝐴| or |𝑇𝑛 − 𝐴|) is 

approximately proportional to ℎ2. 

The Midpoint & Trapezium rules are accordingly described as 

'2nd order' methods. 

So  the absolute size of the error in 𝑀𝑛 ≈ 𝜆ℎ2   and the absolute 

size of the error in 𝑀2𝑛 ≈ 𝜆 (
ℎ

2
)

2
    (and similarly for the 

Trapezium rule). 

Hence  
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑀2𝑛

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑀𝑛
 ≈

𝜆(
ℎ

2
)

2

𝜆ℎ2 =  
1

4
 

and  the absolute size of error in 𝑀2𝑛 ≈
1

4
× absolute size of  error 

in 𝑀𝑛 (and similarly for the Trapezium rule). 

This means that the Midpoint & Trapezium rules both have 1st 

order convergence. 

 

[Note the confusing terminology: 2nd order method, but 1st order 

convergence.] 

  

Also, it can be shown that, for the Simpson's rule:  

absolute size of error in 𝑆2𝑛 ≈ 𝜆ℎ4 
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so that  
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑆4𝑛

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑆2𝑛
 ≈

𝜆(
ℎ

2
)

4

𝜆ℎ4 =  
1

16
 

Simpson's rule is a 4th order method, but again having 1st order 

convergence, as 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑆4𝑛  

≈
1

16
× 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑆2𝑛  

 

(3) Obtaining a better estimate of the integral by extrapolation  

The result 
𝑥𝑟+1−𝑥𝑟

𝑥𝑟−𝑥𝑟−1
≈ 𝑘 in the case of 1st order convergence can be 

applied to 𝑀𝑛 (and also 𝑇𝑛 and 𝑆2𝑛). Here the sequence is 

𝑀1, 𝑀2, 𝑀4, … (ie 𝑥3 = 𝑀4) and  
𝑀4−𝑀2

𝑀2−𝑀1
 , 

𝑀8−𝑀4

𝑀4−𝑀2
  , 

𝑀16−𝑀8

𝑀8−𝑀4
  .... ≈

1

4
 

Similarly,  
𝑇4−𝑇2

𝑇2−𝑇1
 , 

𝑇8−𝑇4

𝑇4−𝑇2
  , 

𝑇16−𝑇8

𝑇8−𝑇4
  .... ≈

1

4
 

and  
𝑆8−𝑆4

𝑆4−𝑆2
  , 

𝑆16−𝑆8

𝑆8−𝑆4
  .... ≈

1

16
 (note that 𝑆1 isn't defined) 

 

Then, for the Trapezium rule (for example): 

𝑇32 − 𝑇16 ≈
1

4
 (𝑇16 − 𝑇8)     (1) 

and hence  𝑇32 ≈ 𝑇16 +  
1

4
 (𝑇16 − 𝑇8)   (1') 

ie given 𝑇8 & 𝑇16, we can estimate 𝑇32 (which will be a better 

estimate for the integral 𝐴) 

 

Similarly  𝑇64 ≈ 𝑇32 +  
1

4
 (𝑇32 − 𝑇16)  (1'') 

So, from (1') & (1),  
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𝑇64 ≈ [𝑇16 +  
1

4
 (𝑇16 − 𝑇8)] +

1

4
.

1

4
(𝑇16 − 𝑇8)  (2) 

And  𝑇128 ≈ 𝑇64 +  
1

4
 (𝑇64 − 𝑇32)   (3) 

so that, from (3) & (2)  

𝑇128 ≈ [𝑇16 +  
1

4
 (𝑇16 − 𝑇8) +

1

42  (𝑇16 − 𝑇8)] +
1

4
.

1

4
(𝑇32 − 𝑇16), 

as  𝑇64 − 𝑇32 ≈
1

4
(𝑇32 − 𝑇16), from (1'') 

So  𝑇128 ≈ 𝑇16 +  
1

4
 (𝑇16 − 𝑇8) +

1

42  (𝑇16 − 𝑇8) +
1

43 (𝑇16 − 𝑇8) , 

from (1) 

and, repeating this process,  

𝐴 ≈ 𝑇16 +  
1

4
 (𝑇16 − 𝑇8) +

1

42  (𝑇16 − 𝑇8) +
1

43
(𝑇16 − 𝑇8) + ⋯  

≈ 𝑇16 +
1

4
 (𝑇16 − 𝑇8)

1

1−
1

4

   

= 𝑇16 +
1

3
 (𝑇16 − 𝑇8)  

 

Naturally we would use the best pair of 𝑇𝑛 & 𝑇2𝑛 available, 

when  𝐴 ≈ 𝑇2𝑛 +
1

3
 (𝑇2𝑛 − 𝑇𝑛)   or   

4𝑇2𝑛

3
−

𝑇𝑛

3
 

 

Note: The same result can be obtained more simply as follows: 

𝑇2𝑛 − 𝐴 ≈
𝑇𝑛−𝐴

4
 ⇒ 𝑇2𝑛 −

𝑇𝑛

4
≈

3𝐴

4
  

⇒ 𝐴 ≈
4𝑇2𝑛

3
−

𝑇𝑛

3
   

 

The same result applies to the Midpoint rule. 



  fmng.uk 

20 
 

For Simpson's rule, 

𝐴 ≈ 𝑆32 +
1

16
 (𝑆32 − 𝑆16) (

1

1−
1

16

) = 𝑆32 +
1

15
 (𝑆32 − 𝑆16) etc 

and generally:  𝐴 ≈ 𝑆4𝑛 +
1

15
 (𝑆4𝑛 − 𝑆2𝑛)   or   

16𝑆4𝑛

15
−

𝑆2𝑛

15
 

 

 


