Numerical Solution of Equations - Comparison of methods

(2 pages; 22/10/18)

(1) Convergence

Provided the function is continuous, the Bisection method and method of False Position will always lead to a root (excluding the case of repeated roots).

The Fixed-point, Newton-Raphson and Secant methods will not converge to a root in all cases.

Typical order of speed of convergence (starting with the fastest):

Newton-Raphson

Fixed Point (with relaxed iteration)

Secant

Fixed Point (without relaxed iteration)

False Position

Bisection

(2) Problems

The Bisection method may not detect a further root within an interval. It doesn't cope with repeated roots.

The Newton-Raphson method may not work if x_0 is close to a stationary point. Also x_1 may be outside the domain of the function, or it may lead to a different root (eg one that has already been found).

(3) Ease of use

For the Fixed-point method, a suitable rearrangement has to be found - although relaxed iteration may be employed.

The Bisection method and the method of False Position automatically provide an interval estimate for the root. The Fixedpoint method provides an interval estimate (x_{n-1}, x_n) , or the other way round, if $g'(\alpha) < 0$. If $g'(\alpha) > 0$, and for the Newton-Raphson and Secant methods, an interval has to be found by looking for a change of sign at neighbouring points.

The Bisection method and the method of False Position are less easily automated than the Fixed-point, Newton-Raphson and Secant methods (as a new interval has to be determined at each stage, with an examination for change of sign). The Newton-Raphson and Fixed Point methods can be applied quickly with a calculator.

For the Bisection method, the number of dps can become unwieldy.