Normal Distribution (9 pages; 21/2/17)
(1) The Normal distribution has a continuous, bell-shaped curve, often associated with naturally-occurring phenomena.

Example

Let X be the height (in cm) of an adult male in the UK.
Then, for the sake of argument, we will suppose that $X \sim N(174,49)$, so that $E(X)=174$ and $\operatorname{Var}(X)=49$

(The approximate \%s shown will be justified later on.)
(2) If $X \sim N\left(\mu, \sigma^{2}\right)$, then the probability density function (pdf) of X is $\phi(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} ;-\infty<x<\infty$

Its cumulative distribution function is given by:
$\Phi(a)=P(X<a)=\int_{-\infty}^{a} \phi(x) d x$

Notes

(i) There is no exact method for carrying out the integration for $\Phi(a)$, which has to determined approximately. (See "Maclaurin Expansions - Exercises")
(ii) $\int_{-\infty}^{\infty} \phi(x) d x=1$
(iii) $\int_{-\infty}^{\mu} \phi(x) d x=0.5$, as the Normal distribution is symmetric about the mean; ie $E(X)$
(iv) The height of the curve and the thickness of the tails will be determined by the variance.
(v) It can be shown that 1 standard deviation to either side of the mean corresponds to the point of inflexion of the curve (ie the turning point of the gradient). [See "Statistics Exercises"]
(3) It isn't feasible (or necessary) to have tables for combinations of $\mu \& \sigma^{2}$. Instead a transformation can be made to the 'standardised Normal' distribution, $Z \sim N(0,1)$, as follows:

Example

Suppose that the heights, X (in cm) of adult males in the UK are distributed $N(174,49)$.

To find $P(X<178)$:
$\left.P(X<178)=P \frac{X-174}{7}<\frac{178-174}{7}\right)=P(Z<0.571)$
Thus, Z is obtained (from any Normal distribution) by first of all shifting the distribution, so that it is centred on a mean of 0 , and then applying a scaling factor, so that the standard deviation becomes 1.

From the Normal tables (see Appendix),

$$
\begin{aligned}
& P(X<178))=P(Z<0.571)=0.7157+0.0003 \\
& =0.7160=0.716(3 \mathrm{sf})
\end{aligned}
$$

Also, $\left.P(X<170)=P \frac{X-174}{7}<\frac{170-174}{7}\right)=P(Z<-0.571)$
$=1-P(Z<0.571)=1-0.7160=0.2840=0.284(3 \mathrm{sf})$

(4) Example (cont'd)
$P(165<X<185)=P(X<185)-P(X<165)$
$\left.P(X<185)=P \frac{X-174}{7}<\frac{185-174}{7}\right)=P(Z<1.571)$
$=0.9419$
$\left.P(X<165)=P \frac{X-174}{7}<\frac{165-174}{7}\right)=P(Z<-1.286)$
$=1-P(Z<1.286)$
[by the symmetry of the curve, and the fact that the total area under the curve is 1]
$=1-0.9008=0.0992$
Hence $P(165<X<185)=0.9419-0.0992$
$=0.8427=0.843(3 \mathrm{sf})$
(5) Inverse Normal Table
$\Phi(z)=P(Z<z)=p$ (say)
so that $z=\Phi^{-1}(p)$
eg $\Phi(1)=P(Z<1)=0.8413$ and $\Phi^{-1}(0.841)=0.9986$
(unfortunately the table is limited to $3 \mathrm{~d} p$ for p; hence the discrepancy between 0.9986 and 1)

See Appendix for the table for $\Phi^{-1}(p)$.
(6) Useful figures
$P(Z>1)=0.16(2 \mathrm{sf})$
$P(Z>2)=0.023(2 \mathrm{sf})$
$P(Z>3)=0.0013(2 \mathrm{sf})$
$P(Z>1.645)=0.05$
$P(Z>1.96)=0.025$
$P(Z>2.326)=0.01$
$P(Z>2.576)=0.005$

Note: As $P(Z>1)=0.16$; ie approximately 16% of the area under the standardised Normal curve lies to the right of 1, which
is one standard deviation for $N(0,1)$, it follows that 16% of the area for any Normal distribution, $N\left(\mu, \sigma^{2}\right)$ lies to the right of one standard deviation; ie σ (as shown in (1)).
[A potential source of confusion here is the fact that 1 is the size of one standard deviation for $N(0,1)$. Thus, for example, $P(Z>1.645)=0.05$ could be written as
$P(Z>0+(1.645)(1))=0.05$
and $P(X>\mu+1.645 \sigma)=0.05$, where $X \sim N\left(\mu, \sigma^{2}\right)$.]

(7) Example

If $P(X<90)=0.4$ and $P(X>120)=0.2$, find μ and σ, given that $X \sim N\left(\mu, \sigma^{2}\right)$

Solution

$P(X<90)=P\left(\frac{X-\mu}{\sigma}<\frac{90-\mu}{\sigma}\right)$
So $P\left(Z<\frac{90-\mu}{\sigma}\right)=0.4$; ie left-hand tail of 40%
$\Rightarrow P\left(Z<-\left(\frac{90-\mu}{\sigma}\right)\right)=0.6$
[where we expect $-\left(\frac{90-\mu}{\sigma}\right)$ to be positive]
$\Rightarrow \frac{-(90-\mu)}{\sigma}=\Phi^{-1}(0.6)=0.2533$
$P(X>120)=P\left(\frac{X-\mu}{\sigma}>\frac{120-\mu}{\sigma}\right)$
So $P\left(Z>\frac{120-\mu}{\sigma}\right)=0.2$; ie right-hand tail of 20%
$\Rightarrow P\left(Z<\frac{120-\mu}{\sigma}\right)=0.8$
$\Rightarrow \frac{120-\mu}{\sigma}=\Phi^{-1}(0.8)=0.8416$
and $\frac{-(90-\mu)}{\sigma}=0.2533$
Solving (1) \& (2) $\Rightarrow \frac{120-\mu}{\mu-90}=\frac{0.8416}{0.2533}=3.3225$
$\Rightarrow 120-\mu=3.3225 \mu-299.025$
$\Rightarrow \mu=\frac{120+299.025}{3.3225+1}=96.940=96.9(3 s f)$
(1) $\Rightarrow \sigma=\frac{96.940-90}{0.2533}=27.398=27.4(3 s f)$

A reasonableness check can be made, by marking in one standard deviation either side of the mean (at the point of inflexion). Also, we know that roughly 16% of the area lies to the right of the 1 standard deviation point.

Appendix: Normal tables

The Normal distribution: values of $\Phi(z)=p$
The table gives the probability, p, of a random variable distributed as $\mathrm{N}(0,1)$ being less thain z.

The Inverse Normal function: values of $\Phi^{-1}(p)=z$

P	\$000	001	,002	.003	. 004	. 005	.006	.007	. 008	. 009
. 50	. 0000	.0025	.0050	.0075	. 0100	. 0125	. 0150	. 0175	. 0201	.0226
. 51	. 0251	. 0276	.0301	.0326	. 0351	.0376	. 0401	. 0426	. 0451	. 0476
. 51	. 0502	, 05277	. 0552	. 0577	. 06002	. 0627	. 0655	. 0677	. 0702	. 0728
53	. 0753	50778	,0803	,0828	, 0853	. 0678	. 0904	. 0929	. 0954	.0979
. 54	. 1004	. 1030	. 1055	. 1080	. 1105	. 1130	. 1156	. 1181	. 1206	.1231
. 55	. 1257	. 1282	. 1307	. 1332	. 1358	. 1383	.1408	1434	. 1459	. 1484
. 56	. 1510	. 1535	. 1560	. 1586	. 1611	. 1637	.1662	. 1687	.1713	. 1738
. 57	. 1764	. 1789	. 1815	.1840	. 1866	.1891	.1917	. 1942	. 1968	.1993
. 58	2019	2045	3070	.2096	2121	2147	2173	2198	2224	. 2250
. 59	2275	2301	2327	2353	2378	2404	2430	2456	2482	. 2508
, 60	2533	2559	. 2585	2611	.2637	. 2663	2689	2715	2741	. 2767
. 61	2793	. 2819	.2845	2871	2898	2924	2950	. 2976	3002	. 3029
. 62	3055	. 3081	. 3107	3134	3160	3186	3213	3239	3266	. 3292
. 63	3319	. 3345	. 3372	. 3398	. 3425	. 3451	-3478	. 3505	3531	. 3558
. 64	3585	3611	3638	3665	3692	3719	3745	3772	3799	. 3826
. 65	3853	3880	. 3907	3934	3961	. 3989	4016	4043	. 4070	,4097
. 66	. 4125	. 4152	. 4179	. 4207	. 4234	. 4261	. 4289	. 4316	. 4344	. 4372
. 67	. 4399	. 4427	. 4454	. 4482	. 4510	. 4538	4565	A593	. 4621	. 4649
. 68	. 4677	. 4705	. 4733	. 4761	4789	. 4817	4845	. 4874	. 4902	. 4930
. 69	. 4959	. 4987	. 5015	. 5044	5072	5101	5129	5158	. 5187	.5215
. 70	5244	5273	. 5302	. 5330	5359	5388	5417	5446	5476	. 5505
. 71	5534	. 5563	. 5592	. 5622	5651	5681	5710	5740	. 5769	. 5799
172	5828	\$5858	. 5888	. 5918	5948	5978	. 0008	. 6038	. 6068	. 6098
.73	. 6128	. 6158	. 6189	. 6219	. 6250	. 62880	. 6311	. 6341	. 6372	. 6403
. 74	. 6433	. 6464	. 6495	. 6526	. 6557	. 65888	. 6620	6651	, 6682	. 6713
. 75	. 6745	. 6776	. 6808	. 6840	. 6871	. 6903	. 6835	. 6967	. 6999	. 7031
. 76	. 7063	. 7095	. 7128	. 7160	. 7192	. 7225	. 7257	.7290	. 7323	. 7356
. 77	. 7388	. 7421	. 7454	.7488	. 7521	.7554	. 7588	. 7621	. 7655	. 7688
. 78	. 7722	. 7756	.7790	. 7824	. 7858	.7892	. 7926	. 7961	. 7995	. 8030
. 79	8064	. 8099	. 8134	8169	. 8204	8239	8274	8310	8345	.8381
. 80	8416	. 8452	. 8488	. 8524	. 8560	. 8596	8633	. 8669	. 8705	. 8742
. 81	. 8779	. 8316	+8853	. 8890	. 8927	. 8965	. 9002	. 9040	. 9078	. 9116
. 82	. 9154	. 9192	. 9230	. 9269	. 9307	. 9346	. 9385	. 9424	9463	. 9502
. 83	. 9542	. 9581	9621	. 9661	.9701	. 9741	9782	. 9822	. 9863	. 9904
. 84	. 9945	. 9988	1.003	1.007	1.011	1.015	1.019	1.024	1.028	1.032
. 85	1.036	1.041	1.045	1.049	1.054	1.058	1.063	1.067	1.071	1.076
. 86	1,080	1.085	1.089	1.094	1.099	1.103	1.108	1.112	1.117	1.122
. 87	1.126	1.131	1.136	1.141	1.146	1.150	1.155	1.160	1.165	1.170
. 88	1.175	1.180	1.185	1.190	1.195	1.200	1.206	1.211	1216	1.221
+89	1,227	1.232	1.237	1.243	1.248	1.254	1.259	1.265	1.270	1.276
. 90	1.282	1.287	1.293	1.299	1.305	1.311	1.317	1.323	1329	1.335
+91	1,341	1.347	1.353	1.360	1366	1.372	1.379	1.385	1392	1.398
. 92	1.405	1.412	1.419	1.426	1.433	1.440	1.447	1.454	1.461	1.468
. 93	1.476	1.483	1.491	1.499	1.506	1.514	1.522	1.530	1.538	1.546
94	1.555	1.563	1.572	1.581	1.589	1.598	1.607	1.616	1.626	1.635
. 95	1.645	1.655	1.665	1.675	1.685	1.695	1.706	1.717	1.728	1.739
. 96	1.751	1.762	1.774	1.787	1.799	1.812	1.825	1.838	1.852	1.866
97	1.881	1.896	1.911	1.927	1.943	1.960	1.977	1.995	2.014	2.034
. 98	2.054	2.075	2.097	2.120	2.144	2.170	2.197	2.226	2257	2.290
. 99	2326	2.366	2.409	2.457	2512	2576	2.652	2.748	2.878	3.090

											(ard)								
7	. 00	. 01	. 02	03	. 04	05	06	.107	. 08	. 09		2	3	4	5	6	7	8	9
0.0	5000	5040	5080	5120	5160	5199	5239	5279	5319	5359		8	12	16	20	24	28	32	36
0.1	5398	5438	5478	5517	5557	5596	5636	5675	5714	5753		8	12	16	20	24	28	32	35
0.2	5793	5832	5871	5910	5948	5987	6026	6064	6103	61.41		8	12	15	19	23	27	31	35
0.3	. 6179	6217	6255	6293	6331	6368	6406	6443	6480	6517		8	11	15.	19	23	26	30	34
0.4	. 6554	6591	6628	6664	6700	6736	6772	6808	6844	6879	4	7	11	14	18	22	25	29	32
0.5	. 6915	6950	6985	7019	. 7054	7008	7123	7157	3190	7224		7	10	14	17	21	24	27	31
0.6	. 7257	7291	7324	7357	7389	7422	7454	7486	-7517	7549	3	6	10	13	16	19	23	26	29
0.7	. 7580	7611	7642	7673	7704	7734	7764	7794	7823	7852	3	6	9	12	15	18	21	24	27
0.8	. 7881	7910	7939	7967	7995	8023	\$051	8078	8106	8133		5	8	11	14	17	19	22	25
0.9	8159	8186	8212	8238	8264	8289	8315	8340	8365	8389	3	5	8	10	13	15	18	20	23
1.0	. 8443	8438	8461	8485	8508	8531	8554	8577	8599	8621		5	7	9	12	14	16	18	21
1.1	.8643	8665	8686	8708	8729	8749	8770	8790	8810	8830		4	6	8	10	12	14	16	19
12	8849	8869	8888	8907	8925	8944	8962	8980	8997	9015		4	6	7	9	11	13	15	16
1.3	. 9032	9049	9066	9082	9099	9115	9131	9147	9162	9177		3	5	6	8	10	11	13	14
1.4	. 9192	9207	9222	9236	9251	9265	9279	9292	9306	9319		3	4	6	7	8	10	11	13
1.5	. 9332	9345	9357	9370	9382	-9394	9406	9418	9429	9441		2		5	6	7	8	10	1
1.6	. 9452	9463	9474	9484	9495	9505	9515	9525	9335	9545		2	3	4	5	6	7	8	9
1.7	. 9554	9364	9573	9582	9591	9599	9608	9616	9625	9633		2	3	3	4	5	6	7	8
1.8	. 9641	9649	9676	\$064	9671	9678	9686	9093	9699	9706		1	2	3	4	4	5	6	6
1.9	. 9713	9719	9726	9732	9738	9744	9750	9756	9761	9767		1	2	2	3	4	4	5	5
2.0	. 9772	9778	9783	9788	9793	9798	9503	9808	9812	9817		1	1	2	2	3	3	4	4
2.1	. 9821	9826	9830	9834	9838	9842	9846	9850	9854	9837		1	1	2	2	2	3	3	4
2.2	. 9861	9864	9868	9871	9875	9878	9881	98884	9887	9890		1	1	1	2	2	2	3	3
2.3	. 9893	9896	9898	9901	9904	9906	9909	9911	9913	9916		1	1	1	1	2	2	2	2
2.4	9918	9920	9922	9925	9927	9929	9931	9932	9934	9936	0	0	1	1	1	1	1	2	2

The Inverse Normal function: values of $\Phi^{-1}(p)=z$

\%	. 000	. 001	. 002	003	. 004	. 005	. 006	. 007	. 008	. 009
. 50	. 0000	. 00225	. 0050	. 00	. 0100	. 0125	. 0150	. 01	. 0201	. 0226
. 51	. 0251	. 0276	. 0301	. 0326	. 0351	. 0376	. 0401	. 0426	. 0451	. 0476
. 52	. 0502	. 0527	. 0552	. 0577	. 0602	. 0627	. 0652	. 0677	. 0702	. 0728
. 53	. 0753	. 0778	. 0803	. 0828	. 0853	. 0878	. 0904	. 0929	. 0954	. 0979
. 54	, 1004	. 1030	1055	. 1080	. 1105	. 1130	. 1156	. 1181	. 1206	. 1231
. 55	. 1257	. 1282	. 1307	. 1332	. 1358	. 1383	, 1408	. 1434	. 1459	. 1484
. 56	. 1510	. 1535	. 1560	. 1586	. 1611	. 1637	,1662	. 1687	. 1713	. 1738
. 57	. 1764	. 1789	. 1815	-1840	. 1866	1891	. 1917	1942	. 1968	. 1993
. 58	2019	. 2045	. 2070	. 2096	2121	2147	. 2173	2198	. 2224	2250
. 59	2275	230	2327	2353	2378	2404	. 2430	2456	,2221	2250

. 60	2533	. 2559	. 2585	2611	2637	. 2663	. 2689	. 2715	. 2741	. 2767
. 61	2793	. 2819	. 2845	. 2871	. 2898	,2924	. 2950	. 2976	. 3002	+3029
. 62	3055	. 3091	. 3107	3134	3160	, 3186	, 3213	. 3239	. 3265	, 3292
. 63	. 3319	. 3345	3372	3398	. 3425	. 3451	. 3478	. 3505	. 3531	. 3558
. 54	3585	3611	3638	3665	3692	3719	. 3745	. 3772	. 3799	. 3826
. 65	3853	. 3880	3907	. 3934	3961	. 3989	. 4016	4043	. 4070	. 4097
. 56	. 4125	. 4152	. 4179	. 4207	. 4234	. 4261	,4289	. 4316	. 4344	. 4372
. 67	. 4399	. 4427	. 4454	. 4482	. 4510	. 4538	. 4565	. 4593	. 4621	. 4649
. 68	. 4677	. 4705	. 4733	. 4761	. 4789	. 4817	. 48185	4874	. 4902	. 4939
. 69	. 4959	4987	5015	. 5044	5072	. 5101	. 5129	. 5158	. 5187	, 5215
. 70	. 5244	. 5273	. 5302	5330	5359	. 5388	. 5417	. 5446	. 54776	. 5505
. 71	. 5534	. 5563	. 5592	. 5622	. 5651	. 5681	. 5710	. 5740	. 5769	. 5799
. 72	. 5828	. 5858	5888	5918	5948	5978	,6008	. 6038	. 5068	, 50998
. 73	. 6128	. 6158	. 6189	. 6219	. 6250	. 6280	. 6311	. 6341	. 6372	. 6403
. 74	. 64333	. 6464	. 6495	. 6526	. 6557	. 6588	. 6620	. 6651	. 66882	. 6713
. 75	. 6745	. 6776	. 6808	. 6840	. 6871	. 6903	. 6935	. 6967	. 6999	. 7031
. 76	. 7063	. 7095	. 7128	. 7160	. 7192	. 7225	,7257	. 7290	. 7323	. 7356
. 77	. 7388	. 7421	. 7454	. 7488	. 7521	. 7554	. 7588	. 7621	. 7655	. 7688
. 78	. 7722	. 7756	. 7790	. 7824	. 7858	.7892	. 7926	. 7961	. 7995	. 8030
. 79	. 8064	. 8099	8134	. 8169	8204	. 8239	. 8274	. 8310	. 8345	8381

.80	8416	.8452	.8488	.8524	.8560	8596	.8633	.8669	.8705	.8742
.81	8779	8816	8853	.8890	8927	8965	9002	.9040	.9078	.9116
.82	.9154	.9192	.9230	.9269	.9307	.9346	9385	.9424	.9463	.9502
.83	9542	.9581	9621	.9661	.9701	.9741	9782	.9822	.9863	.9904
84	.9945	.9986	1.003	1.007	1.011	1.015	1.019	1.024	1.028	1.032
.85	1.036	1.041	1.045	1.049	1.054	1.058	1.063	1.067	1.071	1.076
.86	1.080	1.085	1.089	1.094	1.099	1.103	1.108	1.112	1.117	1.122
87	1.126	1.131	1.136	1.141	1.146	1.150	1.155	1.160	1.165	1.170
.88	1.175	1.180	1.185	1.190	1.195	1.200	1.206	1.211	1.216	1.221
.89	1.227	1.232	1.237	1.243	1.248	1.254	1.259	1.265	1.270	1.276
90	1.282	1.287	1.293	1.299	1.305	1.311	1.317	1.323	1.329	1.335
91	1.341	1.347	1.353	1.360	1.366	1.372	1.379	1.385	1.392	1.398
.92	1.405	1.412	1.419	1.426	1.433	1.440	1.447	1.454	1.461	1.468
93	1.476	1.483	1.491	1.499	1.506	1.514	1.522	1.530	1.538	1.546
94	1.555	1.563	1.572	1.581	1.589	1.598	1.607	1.616	1.626	1.635
.95	1.645	1.655	1.665	1.675	1.685	1.695	1.706	1.717	1.728	1.739
96	1.751	1.762	1.774	1.787	1.799	1.812	1.825	1.838	1.852	1.866
97	1.881	1.896	1.911	1.927	1.943	1.960	1.977	1.995	2.014	2.034
98	2.054	2.075	2.097	2.120	2.144	2.170	2.197	2.226	2.257	2.290
99	2.326	2.366	2.409	2.457	2.512	2.576	2.652	2.748	2.878	3.090

