(1) This is one of two standard methods for approximating functions - the other being Lagrange's method.
aka Newton's forward difference interpolation, or Newton's interpolating polynomial

It is used to create a polynomial function that passes through given points. One use of the function is then to find interpolated values.
(2) A straight line can be drawn through any two points, and a quadratic curve through any three points that don't lie on a straight line. In general, a polynomial function of order $\boldsymbol{n - 1}$ is needed if there are n points (unless the points happen to lie on a polynomial curve of order less than $n-1$).
(3) Consider the 3 points $(4,8),(5,11) \&(6,14)$, which lie on a straight line.

A finite difference table can be constructed as follows:
四

x	f	Δf
4	8	
		3
5	11	
		3
6	14	

From this we obtain the straight line $f(x)=8+3(x-4)$
(4) If instead there is a gap of 2 in the x values; eg if the points are $(4,8),(6,14) \&(8,20)$, then we have the following finite difference table:
四

x	f	Δf
4	8	
		6
6	14	
		6
8	20	

and this gives the straight line $f(x)=8+\frac{6}{(6-4)}(x-4)$, which in the more general case becomes $f(x)=f_{0}+\frac{\Delta f_{0}}{h}\left(x-x_{0}\right)$ Note that $\frac{\Delta f_{0}}{h}=\frac{f_{1}-f_{0}}{x_{1}-x_{0}}$ is the gradient.
(5) For a larger number of points, this extends to:
$f(x)=f_{0}+\frac{x-x_{0}}{h} \Delta f_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2!h^{2}} \Delta^{2} f_{0}$ $+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{3!h^{3}} \Delta^{3} f_{0}+\ldots$
where $\Delta f_{i}=f_{i+1}-f_{i}$ and $\Delta^{2} f_{i}=\Delta f_{i+1}-\Delta f_{i}$,
$h=x_{1}-x_{0}$, and the x values have to be evenly spaced
(6) In the simple case of fitting a straight line to the points $\left(x_{0}, f_{0}\right) \&\left(x_{1}, f_{1}\right)$, Newton's Forward Difference method gives $f(x)=f_{0}+\frac{x-x_{0}}{h} \Delta f_{0}$, which can be rewritten as $\frac{f(x)-f_{0}}{x-x_{0}}=\frac{\Delta f_{0}}{h}$ or $\frac{f(x)-f_{0}}{x-x_{0}}=\frac{f_{1}-f_{0}}{x_{1}-x_{0}}$; ie equating two expressions for the gradient of the line (noting that $(x, f(x))$ is a general point on the line).
(7) If (for example) the 3 rd differences $\left(\Delta^{3} f_{0}\right)$ are constant, then the 4 th and subsequent differences will be zero, and the polynomial will be of order 3 (ie a cubic).

If the 3rd differences are approximately constant, then a cubic function may be a reasonably good fit.
(8) Regardless of whether the 3rd differences are constant, if the starting point for Newton's Forward Difference method is x_{0}, then if a cubic is fitted, it will pass through the points $\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right)$, $\left(x_{2}, f_{2}\right) \&\left(x_{3}, f_{3}\right)$.
[Note that x_{3} doesn't appear explicitly in the cubic polynomial, though $\Delta^{3} f_{0}=\Delta^{2} f_{1}-\Delta^{2} f_{0}=\left(\Delta f_{2}-\Delta f_{1}\right)-\left(\Delta f_{1}-\Delta f_{0}\right)$
$=\Delta f_{2}-2 \Delta f_{1}+\Delta f_{0}$
$=\left(f_{3}-f_{2}\right)-2\left(f_{2}-f_{1}\right)+\left(f_{1}-f_{0}\right)$
$\left.=f_{3}-3 f_{2}+3 f_{1}-f_{0}\right]$

If necessary, the starting point can be some other point (if, for example, interpolation beyond x_{0} is required).
(9) Exercise: In the case where a quadratic is fitted to the points $\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right)$, confirm that $f\left(x_{2}\right)=f_{2}$

Solution

$f\left(x_{2}\right)=f_{0}+\frac{x_{2}-x_{0}}{h} \Delta f_{0}+\frac{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}{2!h^{2}} \Delta^{2} f_{0}$
$\Delta f_{0}=f_{1}-f_{0}$ and $\Delta^{2} f_{0}=\Delta f_{1}-\Delta f_{0}=\left(f_{2}-f_{1}\right)-\left(f_{1}-f_{0}\right)$
so that $f\left(x_{2}\right)=f_{0}+\frac{2 h}{h}\left(f_{1}-f_{0}\right)+\frac{(2 h) h}{2 h^{2}}\left\{\left(f_{2}-f_{1}\right)-\left(f_{1}-f_{0}\right)\right\}$
$f_{0}+2\left(f_{1}-f_{0}\right)+\left\{\left(f_{2}-f_{1}\right)-\left(f_{1}-f_{0}\right)\right\}=f_{2}$
(10) Exercise: If $f(x)$ passes through the points $(2,5),(3,8) \&$ $(4,13)$:
(i) Find the quadratic function obtained from Newton's interpolating polynomial.
(ii) Estimate $f(2.5)$

Solution
(i)

x	f	Δf	$\Delta^{2} f$
2	5		
		3	
3	8		2
		5	
4	13		

$f(x)=f_{0}+\frac{x-x_{0}}{h} \Delta f_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2!h^{2}} \Delta^{2} f_{0}$
becomes $f(x)=5+\frac{(x-2)}{1}(3)+\frac{(x-2)(x-3)}{2}(2)$
$=5-6+6+x(3-5)+x^{2}=x^{2}-2 x+5$
$y=x^{2}-2 x+5$
(ii) From $f(x)=5+\frac{(x-2)}{1}(3)+\frac{(x-2)(x-3)}{2}(2)$, we obtain

$$
\begin{equation*}
f(2.5)=5+\frac{(2.5-2)}{1}(3)+\frac{(2.5-2)(2.5-3)}{2} \tag{2}
\end{equation*}
$$

$=5+\frac{3}{2}-\frac{1}{4}=\frac{25}{4}=6.25$
(ie there is no need to simplify the quadratic to $y=x^{2}-2 x+5$ if only the interpolated value is required)
(11) Suppose that we are given the following points $(3,6),(5,9),(7,14),(9,17),(11,18),(13,16),(15,13)$

The (evenly spaced) x values would be indicated by $x=3(2) 15$

The finite difference table for these points is:

x	f	Δf	$\Delta^{2} f$	$\Delta^{3} f$	$\Delta^{4} f$	$\Delta^{5} f$	$\Delta^{6} f$
3	6						
		3					
5	9		2				
		5		-4			
7	14		-2		4		
		3		0		-5	
9	17		-2		-1		9
11	18		-3				
		-2		2			
13	16		-1				
15	13	-3					

(12) Exercise: (i) Use Newton's interpolating polynomial to fit a cubic function to the points:
$(3,6),(5,9),(7,14),(9,17),(11,18),(13,16),(15,13)$
[the same points that were used earlier on]
(ii) Obtain an estimate for $f(6)$.

Solution
From the earlier finite difference table,
$x=3(2) 15 ; f_{0}=6, \Delta f_{0}=3, \Delta^{2} f_{0}=2, \Delta^{3} f_{0}=-4$
So $f(x)=f_{0}+\frac{x-x_{0}}{h} \Delta f_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2!h^{2}} \Delta^{2} f_{0}$
$+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{3!h^{3}} \Delta^{3} f_{0}+\ldots$
and $f(x) \approx 6+\frac{(x-3)}{2}(3)+\frac{(x-3)(x-5)}{2(4)}(2)+\frac{(x-3)(x-5)(x-7)}{6(8)}(-4)$
$=6+\frac{3(x-3)}{2}+\frac{(x-3)(x-5)}{4}-\frac{(x-3)(x-5)(x-7)}{12}$
which can be simplified to $f(x)=-\frac{1}{12} x^{3}+\frac{3}{2} x^{2}-\frac{77}{12} x+14$

Note that the 3rd difference is not approximately constant, and so a cubic function is not a very good fit overall; only for the points close to x_{0}.
(ii) From the unsimplified polynomial,
$f(6) \approx 6+4.5+0.75+0.25=11.5$
(13) The interpolating polynomial need not be taken about x_{0}. e.g. x_{3} could be used instead:
$f(x)=f_{3}+\frac{x-x_{3}}{h} \Delta f_{3}+\frac{\left(x-x_{3}\right)\left(x-x_{4}\right)}{2!h^{2}} \Delta^{2} f_{3}+$
$\frac{\left(x-x_{3}\right)\left(x-x_{4}\right)\left(x-x_{5}\right)}{3!h^{3}} \Delta^{3} f_{3}+\ldots$
The polynomial will then pass through $\left(x_{3}, f_{3}\right)$.
From the earlier finite difference table,
$x=9(2) 15, f_{3}=17, \Delta f_{3}=1, \Delta^{2} f_{3}=-3, \Delta^{3} f_{0}=2$
and $f(x) \approx 17+\frac{(x-9)}{2}(1)+\frac{(x-9)(x-11)}{2(4)}(-3)$
$+\frac{(x-9)(x-11)(x-13)}{6(8)}(2)$
$=\frac{1}{24} x^{3}-\frac{7}{4} x^{2}+\frac{551}{24} x-\frac{313}{4}$

(14) Exercise: Confirm the standard result for a quadratic sequence $a n^{2}+b n+c$ that a is half the (constant) 2 nd difference.

Solution

As an example (changing n to x), consider the quadratic function $f(x)=6 x^{2}-5 x+1$

Finite Difference table:

x	f	Δf	$\Delta^{2} f$
1	2		
		13	
2	15		12
		25	
3	40		12
		37	
4	77		12
		49	
5	126		12
		61	
6	187		12
		73	
7	260		

$f(x)=f_{0}+\frac{x-x_{0}}{h} \Delta f_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2!h^{2}} \Delta^{2} f_{0}$
When $h=1$, the coefficient of x^{2} is $\frac{\Delta^{2} f_{0}}{2}$

