Example: Finding $\sqrt{2}$ by an iterative method

Let (eg) $x_{0}=1.5$ be the first estimate for $\sqrt{2}$
Consider the rectangle with sides x_{0} and $\frac{2}{x_{0}}$
As $x_{0} \cdot \frac{2}{x_{0}}=2$, one of these sides must be less than $\sqrt{2}$, and the other one greater.

The average of x_{0} and $\frac{2}{x_{0}}$ will then be the next estimate, x_{1}
ie $x_{1}=\frac{1}{2}\left(x_{0}+\frac{2}{x_{0}}\right)$
and so on, with $x_{r+1}=\frac{1}{2}\left(x_{r}+\frac{2}{x_{r}}\right)$
On a calculator, try the following (it should work for Casio models):
$1.5=$
0.5 (Ans $+2 \div$ Ans)
$=$ [repeatedly]
You should get the sequence:
1.416666667
1.414215686
1.414213562
1.414213562

