Mechanics - Important Ideas: Collisions (4 pages; 22/4/21)

(1) A perfectly 'elastic' object (where $e=1$) is one that, on impact with a particular surface, converts all its kinetic energy into elastic potential energy, which is then converted back into the original amount of kinetic energy; ie kinetic energy is conserved. e is a measure of the relative bounciness of the two materials involved in the collision: the bigger e is, the more the objects will bounce off each other
(2) The loss of kinetic energy will be greatest when $e=0$.
(3) Whilst energy is generally lost in a collision (as heat \& sound), momentum is conserved because total change in momentum $=$ total impulse $=0$, since the objects (A and B, say) exert equal and opposite impulses, by Newton's $3^{\text {rd }}$ Law: $F_{A}=-F_{B} \Rightarrow F_{A} t=-F_{B}$ t
(4) It might seem strange that there is no reference to mass in the Newton's Law of Impact: $\mathrm{e}=\frac{v_{s}}{v_{a}}$. However, it is involved indirectly, since v_{s} will be determined by Conservation of Momentum.
(5) The coefficient of restitution between a ball and a surface can be measured as follows (where h_{1} is the height that the ball is dropped from, and h_{2} is the height that it rises to):

$$
\begin{aligned}
e^{2}=\frac{\frac{1}{2} m v^{2}}{\frac{1}{2} m u^{2}} & =\frac{m g h_{2}}{m g h_{1}}(\text { by Conservation of Mechanical Energy) } \\
& =\frac{h_{2}}{h_{1}}
\end{aligned}
$$

(6) Referring to the diagram below (where A \& B have masses $k m \& m$), if $k=1$ then A cannot reverse its direction, and $v=0$ only when $e=1$.

(7) Conditions for A to reverse its direction when A and B collide (A \& B have masses $k m \& m$) [See separate note for details.]
(I) A has speed u and B is stationary

(a) It can be shown that the direction of A is reversed when $e>k$ (whatever value u has).
(b) So if $k \geq 1$, a change of direction isn't possible.
(c) If $k<1$, a change of direction will be possible provided e is sufficiently big. Note that a bigger e means that A and B bounce off each other more.
(II) A and B are moving in the same direction; A has speed λu ($\lambda>1$) and B has speed u.

(a) It can be shown that A will never reverse direction if $\frac{\lambda k+1}{\lambda-1} \geq 1$
(b) In particular, A will never reverse direction if $k \geq 1$ or $\lambda \leq 2$
(c) If $k<1 \& \lambda>2$, then A will reverse direction if certain further conditions apply to $k \& \lambda$, provided that e is big enough.
(III) A and B are moving in opposite directions; A has speed θu and B has speed u.

(a) It can be shown that the condition $k<\frac{\theta+2}{\theta}$ (and sufficiently big e) is necessary and sufficient for A to reverse direction.
(b) In particular, if $k \leq 1$, then A will reverse direction, for sufficiently big e.
(c) And if $k \geq 3$, then A will never reverse direction.

