2018 MAT - Multiple Choice (8 pages; 27/8/20)

Q1/A

Solution

Note that \sqrt{x} means the positive root (consider the quadratic formula, which involves $\pm \sqrt{ }$).

$y=\sqrt{x}$ meets $y=x-2$ when $\sqrt{x}=x-2 \Rightarrow x=(x-2)^{2}$
$\Rightarrow x^{2}-5 x+4=0 \Rightarrow(x-4)(x-1)=0 \Rightarrow x=4$
($x=1$ arises from $-\sqrt{x}=x-2$)
$\mathrm{A}+\mathrm{B}=\int_{0}^{2} x^{\frac{1}{2}} d x+\int_{2}^{4} x^{\frac{1}{2}}-(x-2) d x$
$=\int_{0}^{4} x^{\frac{1}{2}} d x-\int_{2}^{4} x-2 d x$
$=\left[\frac{x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}\right]_{0}^{4}-\left[\frac{1}{2} x^{2}-2 x\right]_{2}^{4}$
$=\frac{2}{3}(8-0)-(0-[-2])$
$=\frac{16}{3}-2=\frac{10}{3}$
\Rightarrow Answer is (d)

Q1/B

Solution

Substituting $y=e^{k x}$ into the equation,
$\left(k^{2} e^{k x}+k e^{k x}\right)\left(k e^{k x}-e^{k x}\right)=e^{k x} \cdot k e^{k x}$
$\Rightarrow\left(k^{2}+k\right)(k-1)=k$, as $e^{k x} \neq 0$
$\Rightarrow k=0$ or $(k+1)(k-1)=1$
$\Rightarrow k=0$ or $k^{2}=2$
So there are 3 distinct values of k that satisfy the equation;
\Rightarrow Answer is (d)

Q1/C

Solution

$a x^{2}+c=b x^{2}+d \Rightarrow(a-b) x^{2}=d-c$
$\Rightarrow x^{2}=\frac{d-c}{a-b}$, provided that $a \neq b$
If $a=b$, then the curves either don't meet at all, or are the same curve (when $c=d$). So $a=b$ can be discounted.

There are then two distinct values of x when $a-b$ and $d-c$ are either both positive or both negative.
\Rightarrow Answer is (e)

Q1/D

Solution

$y=f(x-2)$ is obtained from $y=f(x)$ by a translation of 2 units to the right
$x^{2}-5 x+7=\left(x-\frac{5}{2}\right)^{2}-\frac{25}{4}+7$
\Rightarrow minimum at $\left(\frac{5}{2}, \frac{3}{4}\right)$
So minimum of $y=f(x-2)$ is at $\left(\frac{9}{2}, \frac{3}{4}\right)$
\Rightarrow Answer is (b)

Q1/E

Solution

Referring to the diagram, there will be 13 grid points within or on the circle of radius 2 (1 at the Origin, 4 more on the x-axis, 4 more on the y-axis, and 1 other in each of the 4 quadrants).

Then $2 n-5=21$, so that 8 further grid points are needed, and this occurs when the radius is increased to $\sqrt{1^{2}+2^{2}}=\sqrt{5}$

\Rightarrow Answer is (a)

Q1/F

Solution

[This is a good example of a question where a diagram reveals a hidden feature of the problem.]

The points that the particle can reach are of the form
$p\binom{2}{1}+q\binom{1}{2}$
The two extreme possibilities are where $p=0$ and $q=0$.
These are represented by the lines $y=2 x$ and $y=\frac{1}{2} x$, respectively.

Thus the possible points lie within these two lines (which have gradients of $\frac{1}{2}$ and 2).

We now note that the point $(25,75)$ lies outside this region, as the line joining this point to the Origin has gradient 3.

So (a) can be eliminated.
Were non-integer values of q allowed, it would just be a matter of finding the point on the line $y=2 x$ that is closest to $(25,75)$.

We can however investigate $p=0$:
The general distance of the particle from $(25,75)$ is
$d=\sqrt{(25-2 p-q)^{2}+(75-p-2 q)^{2}}$,
and when $p=0, d=\sqrt{(25-q)^{2}+(75-2 q)^{2}}$
and this is minimised when
$5 q^{2}-350 q+25^{2}+(3 \times 25)^{2}$ is minimised;
ie when $q^{2}-70 q+1250=(q-35)^{2}-1225+1250$ is minimised;
ie when $q=35$, and $d=\sqrt{10^{2}+5^{2}}=5 \sqrt{5}$
As this in fact occurs for an integer value of q, we have shown that the shortest distance is $5 \sqrt{5}$.
\Rightarrow Answer is (b)
[The official sol'n says that "we want the closest point on the boundary of the wedge", but had the value of q not been an integer, it might have been the case that a grid point within the wedge was the one nearest to $(25,75)$.]

Solution

Referring to the diagram, the two curves will only touch tangentially when $c>0$.

The gradients of the two curves are equal when
$2 x=\frac{1}{2} x^{-\frac{1}{2}}$
$\Rightarrow 16 x^{2}=1 / x$
$\Rightarrow x=16^{-\frac{1}{3}}$ and $y=\left(16^{-\frac{1}{3}}\right)^{\frac{1}{2}}=16^{-\frac{1}{6}}$
Then $y=x^{2}+c \Rightarrow c=16^{-\frac{1}{6}}-16^{-\frac{2}{3}}$
$=16^{-\frac{1}{6}}\left(1-16^{-\frac{3}{6}}\right)$
$=16^{-\frac{1}{6}}\left(1-\frac{1}{4}\right)$
$=\frac{3}{4} \cdot 4^{-\frac{1}{3}}$
\Rightarrow Answer is (b)

Q1/H

Solution

[This is a bit of a trick question - the triangles inside the circle turning out to be a red herring.]
[We could try to derive some relation involving the areas of the triangles, and hope that it gives rise to the expression $\frac{4 s^{2}+t^{2}}{5 s t}$, but this would be time-consuming and highly risky. Instead we can quickly see what happens if we rearrange the given expression.]
$E=\frac{4 s^{2}+t^{2}}{5 s t}=\frac{4 s}{5 t}+\frac{t}{5 s}=\frac{4}{5} r+\frac{1}{5} r^{-1}$, writing $r=\frac{s}{t}$
[As the smallest value is required, we could quickly see what $\frac{d E}{d r}=0$ leads to.]

Then $\frac{d E}{d r}=0 \Rightarrow \frac{4}{5}-\frac{1}{5} r^{-2}=0 \Rightarrow r^{-2}=4 \Rightarrow r=\frac{1}{2}$
and when $r=\frac{1}{2}, E=\frac{4}{5}\left(\frac{1}{2}\right)+\frac{1}{5}(2)=\frac{4}{5}$
This means that, whatever values T and S happen to have, E cannot be lower than $\frac{4}{5}$. The question is: does the geometrical setup place any further constraint on E ?

But it is clear that we can construct an example where $s=\frac{1}{2} t$, and so $\frac{4}{5}$ is the minimum value of $\frac{4 s^{2}+t^{2}}{5 s t}$.
ie the answer is (c)

Q1/I

Solution

When $x=0, y^{8}=1 \Rightarrow y= \pm 1$
So only (c) or (d) are possible.
Only (d) has symmetry about the x-axis, which means that replacing y with $-y$ leads to the same value(s) of x.

But this isn't true for the curve in question.
So, by elimination, (c) has to be correct.

Q1/J

Solution

D shows $y=-x$ or $x+y=0$, so D is possible, and we can therefore eliminate (b) and (e).

C shows $x^{2}+y^{2}=r^{2}$ or $x^{2}-\frac{1}{2} r^{2}+y^{2}-\frac{1}{2} r^{2}=0$, so C is possible, and we can therefore eliminate (a).

This leaves (c) and (d). So the key question is whether A is possible.

Given that only polynomials are involved, A must show $y=x^{2}-c$ (or possibly $y=x^{4}-c$), and this isn't of the required form.

So A is not possible, and the answer must be (c).

