2017 MAT Paper - Multiple Choice (7 pages; 28/8/20)

Q1/A

Solution

$f(x)=2 x^{3}-k x^{2}+2 x-k$
$\Rightarrow f^{\prime}(x)=6 x^{2}-2 k x+2$
There will be two distinct stationary points when $\Delta>0$;
ie when $(-2 k)^{2}-4(6)(2)>0$
$\Leftrightarrow k^{2}>12 \Leftrightarrow k<-\sqrt{12}=-2 \sqrt{3}$ or $k>2 \sqrt{3}$
So the answer is (b).
Note: In the general case, where $f(x)=\mathrm{a} x^{3}+\mathrm{b} x^{2}+\mathrm{c} x+d$, a cubic function has two distinct stationary points when $b^{2}-3 a c$. (Also, the point of inflexion (about which there is rotational symmetry) is at $\frac{-b}{3 a}$.)

Q1/B
Solution
Writing $y=\cos ^{2} x, f(y)=9 y^{2}-12 y+7$
This has its minimum value when $y=-\frac{b}{2 a}=\frac{12}{18}=\frac{2}{3}$
and $f(y)=9\left(\frac{2}{3}\right)^{2}-12\left(\frac{2}{3}\right)+7=4-8+7=3$
So the answer is (a).
(Alternatively, we can complete the square.)

Introduction

A large number, such as 2017 , suggests that the sequence may well be periodic.

Solution

$a_{3}=\frac{a_{2}}{a_{1}}=\frac{6}{2}=3, a_{4}=\frac{3}{6}=\frac{1}{2}, a_{5}=\frac{\left(\frac{1}{2}\right)}{3}=\frac{1}{6}, a_{6}=\frac{\left(\frac{1}{6}\right)}{\left(\frac{1}{2}\right)}=\frac{1}{3}$
$a_{7}=\frac{\left(\frac{1}{3}\right)}{\left(\frac{1}{6}\right)}=2, a_{8}=\frac{2}{\left(\frac{1}{3}\right)}=6$
As $a_{7}=a_{1}$ and $a_{8}=a_{2}$, subsequent terms will repeat the ones obtained so far, with the sequence having period 6 .

As $2017=6 \times 336+1, a_{2017}=a_{1}=2$
So the answer is (d).

Q1/D

Solution

$f(x) \rightarrow f(-x)$ is a reflection in the y-axis, and $f(x) \rightarrow-f(x)$ is a reflection in the x-axis, so $f(x) \rightarrow-f(-x)$ is a rotation through 180°, and hence the answer is (c)

Q1/E

Solution

$f(a)=a^{2} b=a^{2}(20-a)=20 a^{2}-a^{3}$
$f^{\prime}(a)=0 \Rightarrow 40 a-3 a^{2}=0 \Rightarrow a=0$ (reject) or $a=\frac{40}{3}=13 \frac{1}{3}$

From the shape of the cubic $y=f(a)$ (see below), the maximum value of $f(a)$ for positive integer a will be at either $a=13$ or $a=14$.

$f(13)=169(7)=1183$, whilst $f(14)=196(6)=1176$ and so the answer is (d)

Note: the official answer says that 13 is the closest integer to $13 \frac{1}{3}$, and so 13 is the required value of a. However, this isn't in itself a reason for $f(a)$ being maximised at $a=13$.

Q1/F

[The labelling of the axes implies the use of parametric equations. More usually, the horizontal variable would be $x=\cos \theta$ and the vertical variable would be $y=\sin \theta$, where θ is the angle that OP makes with the positive x-axis - where P is the point (x, y) on the unit circle.]

Solution

By considering the graphs of $\tan x, \cos x \& \sin x$, it can be seen that the answer is (c).

Q1/G

Solution

The given line can be written as $\frac{y-1}{x-(-1)}=\tan \theta$, and so it passes through the point $(-1,1)$, at an angle θ to the x-axis.

Consider first of all the area $A(0)$, when the line is parallel to the x-axis. As θ starts to increase, so that the line rotates about $(-1,1)$, it can be seen that the larger region gains from the smaller region, and so $A(\theta)$ increases. This continues until $\theta=\frac{\pi}{4}$, when the process starts to be reversed. $A(\theta)$ is maximised again when $\theta=\frac{\pi}{4}+\pi$. Thus there are two values of θ in the range $0 \leq \theta<2 \pi$ for which $A(\theta)$ is maximised.

So the answer is (b).

Q1/H

Solution

By the Remainder/Factor theorems,
$(-b)^{2}-2 a(-b)+a^{4}=1$ and $b\left(\frac{1}{a}\right)^{2}+\frac{1}{a}+1=0 ;$
ie $b^{2}+2 a b+a^{4}=1$ (1) and $b+a+a^{2}=0$
[Attempting to eliminate a :]
(1) can be written as $(b+a)^{2}-a^{2}+a^{4}=1$

Then, from (2), $a^{4}-a^{2}+a^{4}=1$
$\Rightarrow a^{4}-a^{2}=1-a^{4}$
$\Rightarrow a^{2}\left(a^{2}-1\right)=\left(1-a^{2}\right)\left(1+a^{2}\right)$
$\Rightarrow a^{2}=1$ or $a^{2}=-\left(1+a^{2}\right)$
As $-\left(1+a^{2}\right)<0$, the 2 nd option isn't possible.

If $a=1,(1) \Rightarrow b^{2}+2 b=0$ and (2) $\Rightarrow b=-2$
As these are consistent, one solution is $b=-2$
If $a=-1$, (1) $\Rightarrow b^{2}-2 b=0$ and (2) $\Rightarrow b=0$
As these are consistent, another solution is $b=0$
So the answer is (b).

Q1/I

Solution

$\log _{b}\left(\left(b^{x}\right)^{x}\right)=x^{2}$ and $\log _{a}\left(\frac{c^{x}}{b^{x}}\right)=x \log _{a}\left(\frac{c}{b}\right)$
So the equation is a quadratic in x and has a repeated root when
$\left[\log _{a}\left(\frac{c}{b}\right)\right]^{2}-4 \log _{a}\left(\frac{1}{b}\right) \log _{a}(c)=0$
$\Rightarrow\left(\log _{a} c-\log _{a} b\right)^{2}+4 \log _{a} b \log _{a} c=0$
$\Rightarrow\left(\log _{a} c+\log _{a} b\right)^{2}=0$
$\Rightarrow \log _{a} c=-\log _{a} b=\log _{a}\left(\frac{1}{b}\right)$
$\Rightarrow c=\frac{1}{b}$
So the answer is (d).

Q1/J

Introduction

A common approach for this type of question is to show, for example, that $A \leq a$ and $B \geq b$, where $a<b$, so that $A<B$ (or $A<a$ and $B \geq b$, where $a \leq b$ etc).

So, for this question, we could try to find a relation of the form $A \leq a$ in 4 of the cases, and one relation of the form $B \geq b$ (or something similar).

Solution

We can see that (a) <0.
(b): The maximum value of $(2+\cos x)^{3}$ occurs when $\cos x=1$, and is 27 . So (b) $<2 \pi(27)=54 \pi$.
(c) $<\pi(1)=\pi$
(d): The minimum value of $(3-\sin x)^{6}$ occurs when $\sin x=1$, and is $2^{6}=64$. So (d) $>\pi(64)=64 \pi$.
(e) As $\left(\sin ^{3} x-1\right) \leq 0$, (e) <0

So the answer is (d), as $64 \pi>54 \pi$.

