2017 MAT Paper - Multiple Choice (7 pages; 28/8/20)

Q1/A

Solution

 $f(x) = 2x^3 - kx^2 + 2x - k$ $\Rightarrow f'(x) = 6x^2 - 2kx + 2$

There will be two distinct stationary points when $\Delta > 0$;

ie when
$$(-2k)^2 - 4(6)(2) > 0$$

 $\Leftrightarrow k^2 > 12 \Leftrightarrow k < -\sqrt{12} = -2\sqrt{3}$ or $k > 2\sqrt{3}$

So the answer is (b).

Note: In the general case, where $f(x) = ax^3 + bx^2 + cx + d$,

a cubic function has two distinct stationary points when $b^2 - 3ac$. (Also, the point of inflexion (about which there is rotational symmetry) is at $\frac{-b}{3a}$.)

Q1/B

Solution

Writing $y = cos^2 x$, $f(y) = 9y^2 - 12y + 7$

This has its minimum value when $y = -\frac{b}{2a} = \frac{12}{18} = \frac{2}{3}$

and
$$f(y) = 9(\frac{2}{3})^2 - 12(\frac{2}{3}) + 7 = 4 - 8 + 7 = 3$$

So the answer is (a).

(Alternatively, we can complete the square.)

Q1/C

Introduction

A large number, such as 2017, suggests that the sequence may well be periodic.

Solution

$$a_{3} = \frac{a_{2}}{a_{1}} = \frac{6}{2} = 3, \ a_{4} = \frac{3}{6} = \frac{1}{2}, \ a_{5} = \frac{\left(\frac{1}{2}\right)}{3} = \frac{1}{6}, \ a_{6} = \frac{\left(\frac{1}{6}\right)}{\left(\frac{1}{2}\right)} = \frac{1}{3}$$
$$a_{7} = \frac{\left(\frac{1}{3}\right)}{\left(\frac{1}{6}\right)} = 2, \ a_{8} = \frac{2}{\left(\frac{1}{3}\right)} = 6$$

As $a_7 = a_1$ and $a_8 = a_2$, subsequent terms will repeat the ones obtained so far, with the sequence having period 6.

As $2017 = 6 \times 336 + 1$, $a_{2017} = a_1 = 2$

So the answer is (d).

Q1/D

Solution

 $f(x) \rightarrow f(-x)$ is a reflection in the *y*-axis, and $f(x) \rightarrow -f(x)$ is a reflection in the *x*-axis, so $f(x) \rightarrow -f(-x)$ is a rotation through 180°, and hence **the answer is (c)**

Q1/E

Solution

$$f(a) = a^{2}b = a^{2}(20 - a) = 20a^{2} - a^{3}$$
$$f'(a) = 0 \Rightarrow 40a - 3a^{2} = 0 \Rightarrow a = 0 \text{ (reject) or } a = \frac{40}{3} = 13\frac{1}{3}$$

From the shape of the cubic y = f(a) (see below), the maximum value of f(a) for positive integer a will be at either a = 13 or a = 14.

$$f(13) = 169(7) = 1183$$
, whilst $f(14) = 196(6) = 1176$

and so the answer is (d)

Note: the official answer says that 13 is the closest integer to $13\frac{1}{3}$, and so 13 is the required value of *a*. However, this isn't in itself a reason for *f*(*a*) being maximised at *a* = 13.

Q1/F

[The labelling of the axes implies the use of parametric equations. More usually, the horizontal variable would be $x = cos\theta$ and the vertical variable would be $y = sin\theta$, where θ is the angle that OP makes with the positive *x*-axis - where P is the point (*x*, *y*) on the unit circle.]

Solution

By considering the graphs of *tanx*, *cosx* & *sinx*, it can be seen that **the answer is (c)**.

Q1/G

Solution

The given line can be written as $\frac{y-1}{x-(-1)} = tan\theta$, and so it passes through the point (-1, 1), at an angle θ to the *x*-axis.

Consider first of all the area A(0), when the line is parallel to the x-axis. As θ starts to increase, so that the line rotates about (-1, 1), it can be seen that the larger region gains from the smaller region, and so $A(\theta)$ increases. This continues until $\theta = \frac{\pi}{4}$, when the process starts to be reversed. $A(\theta)$ is maximised again when $\theta = \frac{\pi}{4} + \pi$. Thus there are two values of θ in the range

 $0 \le \theta < 2\pi$ for which $A(\theta)$ is maximised.

So the answer is (b).

Q1/H

Solution

By the Remainder/Factor theorems,

 $(-b)^2 - 2a(-b) + a^4 = 1$ and $b\left(\frac{1}{a}\right)^2 + \frac{1}{a} + 1 = 0$; ie $b^2 + 2ab + a^4 = 1$ (1) and $b + a + a^2 = 0$ (2) [Attempting to eliminate a:] (1) can be written as $(b + a)^2 - a^2 + a^4 = 1$ Then, from (2), $a^4 - a^2 + a^4 = 1$ $\Rightarrow a^4 - a^2 = 1 - a^4$ $\Rightarrow a^2(a^2 - 1) = (1 - a^2)(1 + a^2)$ $\Rightarrow a^2 = 1 \text{ or } a^2 = -(1 + a^2)$ As $-(1 + a^2) < 0$, the 2nd option isn't possible. If a = 1, $(1) \Rightarrow b^2 + 2b = 0$ and $(2) \Rightarrow b = -2$ As these are consistent, one solution is b = -2If a = -1, $(1) \Rightarrow b^2 - 2b = 0$ and $(2) \Rightarrow b = 0$ As these are consistent, another solution is b = 0**So the answer is (b)**.

Q1/I

Solution

$$log_b((b^x)^x) = x^2$$
 and $log_a\left(\frac{c^x}{b^x}\right) = xlog_a\left(\frac{c}{b}\right)$

So the equation is a quadratic in *x* and has a repeated root when

$$[log_{a}\left(\frac{c}{b}\right)]^{2} - 4log_{a}\left(\frac{1}{b}\right)log_{a}(c) = 0$$

$$\Rightarrow (log_{a}c - log_{a}b)^{2} + 4log_{a}blog_{a}c = 0$$

$$\Rightarrow (log_{a}c + log_{a}b)^{2} = 0$$

$$\Rightarrow log_{a}c = -log_{a}b = log_{a}\left(\frac{1}{b}\right)$$

$$\Rightarrow c = \frac{1}{b}$$

So the answer is (d).

Q1/J

Introduction

A common approach for this type of question is to show, for example, that $A \le a$ and $B \ge b$, where a < b, so that A < B

(or A < a and $B \ge b$, where $a \le b$ etc).

So, for this question, we could try to find a relation of the form $A \le a$ in 4 of the cases, and one relation of the form $B \ge b$ (or something similar).

Solution

We can see that (a) < 0.

(b): The maximum value of $(2 + cosx)^3$ occurs when cosx = 1, and is 27. So (b) $< 2\pi(27) = 54\pi$.

(c) < $\pi(1) = \pi$

(d): The minimum value of $(3 - sinx)^6$ occurs when sinx = 1, and is $2^6 = 64$. So (d) > $\pi(64) = 64\pi$.

(e) As $(sin^3x - 1) \le 0$, (e) < 0

So the answer is (d), as $64\pi > 54\pi$.