2016 MAT - Multiple Choice (8 pages; 27/8/20)

Q1/A
Solution
$a_{r}=l^{r-1}$
$\prod_{r=1}^{15} a_{r}=1 . l . l^{2} \ldots . . l^{14}=l^{\frac{1}{2}(14)(15)}=l^{105}$
So the answer is (d).

Q1/B

Solution
Let the hexagon have sides of length x.
Then $x+\frac{x}{\sqrt{2}}=1$,
so that $x=\frac{1}{1+\left(\frac{1}{\sqrt{2}}\right)}=\frac{\sqrt{2}}{\sqrt{2}+1}=\sqrt{2}(\sqrt{2}-1)=2-\sqrt{2}$
So the answer is (b).

Q1/C

Solution
$x^{2}+a x+y^{2}+b y=c$
$\Rightarrow\left(x+\frac{a}{2}\right)^{2}+\left(y+\frac{b}{2}\right)^{2}-\frac{a^{2}}{4}-\frac{b^{2}}{4}=c$
So the centre is $\left(-\frac{a}{2}, \frac{b}{2}\right)$ and the radius $=\sqrt{c+\frac{a^{2}}{4}+\frac{b^{2}}{4}}$

The Origin will lie within the circle when the distance of the centre from the Origin is less than the radius;
ie when $\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}}<\sqrt{c+\frac{a^{2}}{4}+\frac{b^{2}}{4}}$
and $\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}<c+\frac{a^{2}}{4}+\frac{b^{2}}{4}$;
ie $c>0$
So the answer is (a).

Q1/D

Solution
$\cos ^{n}(x)+\cos ^{2 n}(x)=0$
$\Rightarrow \cos ^{n}(x)\left(1+\cos ^{n}(x)\right)=0$
$\Rightarrow \cos x=0$ or $\cos ^{n}(x)=-1$
If n is even, then there are no sol'ns to $\cos ^{n}(x)=-1$, and 2 sol'ns to $\cos x=0$ in the given range.
[So the answer can only be (d).]
If n is odd, then $\cos ^{n}(x)=-1 \Rightarrow \cos x=-1$, for which there is 1 sol'n in the given range, and there are 2 sol'ns to $\cos x=0$.

Thus, if n is even, then there are 2 sol'ns, and if n is odd, then there are 3 sol'ns.

So the answer is (d).

Solution

Let $f(x)=(x-1)^{2}-\cos (\pi x)$
$f(0)=0$; ie the curve should pass through the Origin
So the answer can only be (a), (b) or (c).
The line of symmetry of $y=f(x)$ is $x=1$
$\left[f(1+a)=a^{2}-\cos (\pi+\pi a)\right.$
$=a^{2}-\cos \pi \cos (\pi a)+\sin \pi \sin (\pi a)$
$=a^{2}-\cos \pi \cos (\pi a)$
$f(1-a)=a^{2}-\cos (\pi-\pi a)$
$=a^{2}-\cos \pi \cos (\pi a)-\sin \pi \sin (\pi a)$
$=a^{2}-\cos \pi \cos (\pi a)$,
so that $f(1-a)=f(1+a)$]
and $f(1)=1$,
so that the answer is (a).

Q1/F

Solution

Let $y=x^{2}$
Then equivalent requirement is that $y+1$ is a factor of
$f(y)=\left(3+y^{2}\right)^{n}-(y+3)^{n}(y-1)^{n}$
This occurs when $f(-1)=0$;
ie when $4^{n}-2^{n}(-2)^{n}=0$ (1)

When n is even, (1) becomes $4^{n}-2^{n} 2^{n}=0$, which is always true.

When n is odd, (1) becomes $4^{n}+2^{n} 2^{n}=0$, which is never true.
So the answer is (b).

Q1/G

Solution

The sequence is $1,1,2,4,8,16, \ldots$
Note that eg $16=(1+1+2+4)+8=8+8$; ie the sequence doubles at each step.

So $x_{k}=2^{k-1}$ for $k>0$
and $\sum_{k=0}^{\infty} \frac{1}{x_{k}}=1+\sum_{k=1}^{\infty} 2^{-(1-k)}$
$=1+\frac{1}{1-\frac{1}{2}}=1+2=3$
So the answer is (d).

Q1/H

Solution

$\int_{0}^{\sqrt{a}} a-x^{2} d x>-\int_{0}^{\sqrt[4]{a}} x^{4}-a d x \quad($ as $g(x)$ lies below the x-axis)
$\Leftrightarrow\left[a x-\frac{1}{3} x^{3}\right]_{0}^{\sqrt{a}}+\left[\frac{1}{5} x^{5}-a x\right]_{0}^{\sqrt[4]{a}}>0$
$\Leftrightarrow a^{\frac{3}{2}}-\frac{1}{3} a^{\frac{3}{2}}+\frac{1}{5} a^{\frac{5}{4}}-a^{\frac{5}{4}}>0$
$\Leftrightarrow \frac{2}{3} a^{\frac{3}{2}}-\frac{4}{5} a^{\frac{5}{4}}>0$
$\Leftrightarrow \frac{1}{15} a^{\frac{5}{4}}\left(10 a^{\frac{1}{4}}-12\right)>0$
$\Leftrightarrow 5 a^{\frac{1}{4}}-6>0($ as $a>0)$
$\Leftrightarrow a^{\frac{1}{4}}>\frac{6}{5}$
$\Leftrightarrow a>\left(\frac{6}{5}\right)^{4} \quad$ (as $y=x^{4}$ is an increasing function, for $x>0$)
So the answer is (e).

Q1/I

Solution

Write $y^{2}=1-x^{2}-A$, where $A \geq 0$
Let $f(x)=a x+b y=a x+b \sqrt{1-x^{2}-A}$ (taking the positive root, to maximise $f(x)$).

Then $f^{\prime}(x)=a+\frac{b}{2}\left(1-x^{2}-A\right)^{-\frac{1}{2}}(-2 x)$
and $f^{\prime}(x)=0 \Rightarrow a=\frac{b x}{\sqrt{1-x^{2}-A}}$
$\Rightarrow a^{2}\left(1-x^{2}-A\right)=b^{2} x^{2}$
$\Rightarrow x^{2}\left(a^{2}+b^{2}\right)=a^{2}(1-A)$
$\Rightarrow x=\frac{a \sqrt{1-A}}{\sqrt{a^{2}+b^{2}}}$ (taking the positive root again, to maximise $f(x)$)
And then $y=\sqrt{1-\frac{a^{2}(1-A)}{a^{2}+b^{2}}-A}$ (taking the positive root, to maximise $f(x)$)
$=\sqrt{\frac{a^{2}+b^{2}-a^{2}(1-A)-A\left(a^{2}+b^{2}\right)}{a^{2}+b^{2}}}$
$=\sqrt{\frac{b^{2}(1-A)}{a^{2}+b^{2}}}$
And so $f(x)$ is maximised by setting $A=0$,
giving $f(x)=\frac{a^{2}}{\sqrt{a^{2}+b^{2}}}+\frac{b^{2}}{\sqrt{a^{2}+b^{2}}}=\sqrt{a^{2}+b^{2}}$

So the answer is (c).

Alternative method 1 (using 2nd year theory)
Suppose that a sol'n exists for which $x^{2}+y^{2}<1$; ie so that the point (x, y) lies inside the unit circle centred on the Origin.

Then it would be possible to increase $a x+b y$ by increasing either x or y, until (x, y) lies on the circle.

So $x^{2}+y^{2}=1$, and we can write $x=\cos \theta, y=\sin \theta$ for some θ.
Then $a x+b y=a \cos \theta+b \sin \theta$ can be written as
$r \sin (\theta+\alpha)=r \sin \theta \cos \alpha+r \sin \alpha \cos \theta$,
where $a=r \sin \alpha \& b=r \cos \alpha$,
so that $r^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=a^{2}+b^{2}$, and hence $r=\sqrt{a^{2}+b^{2}}$
Thus the largest value that $a x+b y$ can equal is $r=\sqrt{a^{2}+b^{2}}$.

Alternative method 2

Write $a x+b y=c$, and rearrange to $y=-\frac{a}{b} x+\frac{c}{b}$
[The official sol'ns incorrectly says $y=\frac{a}{b} x+\frac{c}{b}$]

This is the family of lines of gradient $-\frac{a}{b}$, and we want the line that crosses the y-axis as high as possible. Referring to the diagram, the gradient of OP is $-\frac{1}{\left(-\frac{a}{b}\right)}=\frac{b}{a}$. Thus $\tan \theta=\frac{b}{a}$ and so $\frac{d}{1}=\tan (90-\theta)=\frac{a}{b}$
Then, by Pythagoras' theorem, $1^{2}+d^{2}=\left(\frac{c}{b}\right)^{2}$
so that $b^{2}+a^{2}=c^{2}$, and $c=\sqrt{a^{2}+b^{2}}$

Q1/J

Solution

(a) true; eg $x(n)=4$: this is possible (eg when $x=4$, so that $\Pi(n)=1$), and n cannot be prime
(b) $x(n)$ would have to be odd (if it were 2 , then 32 would be an exception to the proposition; other even numbers $\Rightarrow \mathrm{n}$ isn't prime); $3^{4}=81$ rules out $x(n)=1 ; 3^{5}=243$ rules out $x(n)=3$; $3^{6}=729$ rules out $x(n)=9 ; 3^{7}=2187$ rules out $x(n)=7$; $5^{2}=25$ rules out $x(n)=5$; so the statement is false So the answer is (b).
[The official sol'ns give $7^{5}=16807$ as a counterexample for $x(n)=7$, but it's not an obvious one to try!]
$[(\mathrm{c}): x(n)=0 \Rightarrow 2 \& 5$ must be factors, which contradicts $\Pi(n)=$ 1 ; so (c) is true
(d) If eg $\Pi(n)=1 \& x(n)=1$, in which case n could be eg 11 (prime), or $3^{4}=81$ (not prime); so (d) is true
(e) eg 2×3 gives $x(n)=6 ; 2 \times 5$ gives $x(n)=0$;
2×7 gives $x(n)=4 ; 2 \times 11$ gives $x(n)=2$;
2×19 gives $x(n)=8 ; 3 \times 5$ gives $x(n)=5$;
3×7 gives $x(n)=1 ; 3 \times 11$ gives $x(n)=3$;
3×13 gives $x(n)=9 ; 3 \times 19$ gives $x(n)=7$
so (e) is true]

