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(i) From (A), f(x + 0) = f(x)f(0),

So that f(0) = % (as f(x) # 0), and thus f(0) = 1, as required.

(i) As f'(x) = f(x), [ f(x)dx = f(x) +c,

sothat] = [f(x)](l) = f(1) — f(0) = a — 1, as required.

(iii) [‘steps’ may be a typo, as ‘strips’ is more common]

b =GO +F+2[f )+ £ () + -+ (7))
Then, as f(x +y) = f(x)f(y),
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Andb"=f(2) =4q

So that I,, = %(b—il) [(1+a)(b—1)+ 2a — 2b]
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=— (=) b+ D(-1+a)

= % (E) (a — 1), as required.
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(iv) rtp [result to prove]: a < (1 + 2n—1)
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Equivalently, b = arn < 1 +

1 /b+1
Now,InZI:Z(E)(a—l)Za—l,

So that i(ﬁ) >1
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