2011 MAT Paper - Q2 (2 pages; 30/8/20)

Solution

(i)
$$x^3 = 2x + 1 \Rightarrow x^4 = x(2x + 1) = x + 2x^2$$

and $x^5 = x(x + 2x^2) = x^2 + 2(2x + 1) = 2 + 4x + x^2$

(ii)
$$x^{k+1} = x(A_k + B_k x + C_k x^2)$$

 $= A_k x + B_k x^2 + C_k x^3$
 $= A_k x + B_k x^2 + C_k (2x + 1)$
 $= C_k + (A_k + 2C_k)x + B_k x^2$
Also $x^{k+1} = A_{k+1} + B_{k+1}x + C_{k+1}x^2$

Equating coefficients:

$$A_{k+1} = C_k$$
; $B_{k+1} = (A_k + 2C_k)$; $C_{k+1} = B_k$

(iii)
$$D_{k+1} = A_{k+1} + C_{k+1} - B_{k+1}$$

= $C_k + B_k - (A_k + 2C_k)$, from (ii)
= $-C_k + B_k - A_k = -D_k$

rtp:
$$A_k + C_k = B_k + (-1)^k$$

ie that $D_k = (-1)^k$
Now, $D_0 = A_0 + C_0 - B_0 = 1 + 0 - 0 = 1$, as $x^0 = 1$
Then $D_{k+1} = -D_k \Rightarrow D_1 = -1$; $D_2 = 1$...
and $D_k = (-1)^k$, as required

fmng.uk

(iv)
$$F_k + F_{k+1} = A_{k+1} + C_{k+1} + A_{k+2} + C_{k+2}$$
 (1)
$$F_{k+2} = A_{k+3} + C_{k+3} = C_{k+2} + B_{k+2}$$
$$= C_{k+2} + (A_{k+1} + 2C_{k+1})$$

$$= F_k + F_{k+1} - A_{k+2} + C_{k+1}$$
, from (1)

$$= F_k + F_{k+1}$$
, as required