2010 MAT Paper - Q3 (2 pages; 28/18/20)

Solution

(i) Area $O A C<$ Area of sector $O A C$
$\Rightarrow \frac{1}{2}(1)^{2} \sin x<\frac{1}{2}(1)^{2} x \Rightarrow \sin x<x$
rtp: $x \cos x<\sin x$ or $x<\tan x\left(\right.$ as $0<x<\frac{\pi}{2} \&$ hence $\cos x>0$)
Area of sector $O A C<$ Area $O A B$
$\Rightarrow \frac{1}{2}(1)^{2} x<\frac{1}{2}(1) \tan x$
$\Rightarrow x<\tan x$, as required.
(ii) As $x>0, x \cos x<\sin x<x \Rightarrow \cos x<\frac{\sin x}{x}<1$

As $\cos x \rightarrow 1$ as $x \rightarrow 0, \frac{\sin x}{x}$ is trapped between 1 and a number that gets closer to 1 , so that $\frac{\sin x}{x} \rightarrow 1$
[L'Hôpital's rule: if $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=0$ or $\pm \infty$, then $\left.\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f \prime(x)}{g^{\prime}(x)}\right]$
(iii)

(iv) See (ii). The hump of $y=\frac{\sin x}{x}$ in the diagram in (ii) between $x=2 \pi \& x=3 \pi$ represents the 1 st positive repeated root of $\frac{\sin x}{x}=c$, and therefore the 1 st positive repeated root of $\sin x=c x$; ie where the graphs of $y=\sin x \& y=c x$ touch.
(v) X is where $\frac{\sin x}{x}=c$; ie the 1 st positive maximum of $y=\frac{\sin x}{x}$
$\frac{d y}{d x}=0 \Rightarrow \frac{x \cos x-\sin x}{x^{2}}=0$
$\Rightarrow x \cos x-\sin x=0 \Rightarrow x=\tan x$; ie $\tan X=X$

