2010 MAT Paper - Multiple Choice (7 pages; 28/18/20)

## Q1/A

## Solution

At the point of intersection, $(x-1)^{2}=k x$,
or $x^{2}-(k+2) x+1=0$
A solution exists when $(k+2)^{2}-4 \geq 0$
$\Rightarrow k^{2}+4 k \geq 0$
$\Rightarrow k(k+4) \geq 0$
$\Rightarrow k \geq 0$ or $k \leq-4$ (from the graph of $y=k(k+4)$, for example).
So the answer is (c).

Q1/B
Solution
$1+1+2+\frac{1}{2}+4+\frac{1}{4}+8+\frac{1}{8}+16+\frac{1}{16}+\cdots 2^{n-1}+\frac{1}{2^{n-1}}$
$=\left(1+2+4+8+16+\cdots+2^{n-1}\right)$
$+\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots+\frac{1}{2^{n-1}}\right)$
$=\frac{2^{n}-1}{2-1}+\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}}$
$=\left(2^{n}-1\right)+2\left(1-2^{-n}\right)$
$=2^{n}+1-2^{1-n}$
So the answer is (a).

## Solution

Dividing by $\cos ^{2} x$ gives
$\tan ^{2} x+3 \tan x+2=0$, provided that $\cos x \neq 0$
If $\cos x=0$, then the original eq'n gives $\sin ^{2} x=0$, which has no sol'ns when $\cos x=0$.

So $(\tan x+1)(\tan x+2)=0$
$\Rightarrow \tan x=-1$ or -2
giving 4 sol'ns in the range $0 \leq x<2 \pi$
So the answer is (d).

## Q1/D

## Solution

Maxima occur at $\sqrt{x}=(2 k+1)\left(\frac{\pi}{2}\right)$, so that $x=(2 k+1)^{2}\left(\frac{\pi^{2}}{4}\right)$; ie the gap between $x$-values increases (and the value of the maximum is always 1 ),
so the answer must be (b).

## Q1/E

## Solution

Let $\log _{2} 3=a$ etc
There doesn't seem to be any general procedure for deciding on the relative sizes of $\log _{p} x \& \log _{q} y$. But there are various ad-hoc results that we can use. For example, it is often possible to
establish whether $\log _{p} x$ is greater or less than a particular value, as shown below.

In this case, we note first of all that
$1<a<2,1<b<2,0<c<1 \& 1<d<2$, so that (c) can be eliminated.

Also $b=\log _{4}\left(2^{3}\right)=3 \log _{4} 2=3\left(\frac{1}{2}\right)=1.5$
Now, from the diagram below we see that $a=\log _{2} 3>1.5$


So that (b) can be eliminated.
Then $\log _{5} 10=\log _{5}(5 \times 2)=\log _{5} 5+\log _{5} 2=1+\log _{5} 2$
$<1+\log _{5} \sqrt{5}=1.5$, so that $d<1.5<a$
and the answer is therefore (a).

## Solution

The Trapezium rule estimate will equal the actual integral when the interval borders include $x=\frac{1}{3}, \frac{1}{2} \& \frac{3}{4}$. This means that $n$ has to be a multiple of 12 .

So the answer is (d).

## Q1/G

## Solution

$f(2)=2 f(1)=2$
$f(3)=4 f(1)=4$
$f(4)=2 f(2)=4$
$f(5)=4 f(2)=8$
$f(6)=2 f(3)=8$
$f(7)=4 f(3)=16^{*}$
$f(8)=2 f(4)=8$
$f(9)=4 f(4)=16 *$
$f(10)=2 f(5)=16 *$
$f(11)=4 f(5)=32$
[and subsequent $f(2 n+1)$ will also exceed 16 , as $f(n)$ will exceed 4 when $n$ exceeds 4]
$f(12)=2 f(6)=16 *$
$f(14)=2 f(7)=32$
$f(16)=2 f(8)=16 *$
$f(18)=2 f(9)=32$
[and subsequent $f(2 n)$ will also exceed 16 , as $f(n)$ will exceed 8 when $n$ exceeds 8]

Thus there are 5 values of $n$ that satisfy $f(n)=16$.
So the answer is (c).

## Q1/H

## Solution

(a): All cubic eq'ns with real coefficients have at least one root, so that (a) can be eliminated.
(b): Considering the shape of the quartic on the LHS (starting in the 2 nd quadrant, and finishing in the 1st quadrant), there will not be a sol' $n$ of the eq'n if $k$ is sufficiently large and negative.

Thus (b) can be eliminated.
(d): Consider $(x-1)(x-2)=k$
$\Rightarrow x^{2}-3 x+2-k=0$
$\Rightarrow\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}-k=0$
Then let $k=-\frac{9}{4}$, so that $x=\frac{3}{2}$ is a repeated root.
Thus (d) can be eliminated.
So the answer must be (c).
[To show that (c) is true: If $n$ is odd, then the polynomial function on the LHS starts in the 3rd quadrant, and finishes in the 1st quadrant, so that it must cross $y=k$. If $n$ is even, then it starts in the 2 nd quadrant, and finishes in the 1 st quadrant (and crosses the $x$-axis), so that it must cross $y=k$ if $k \geq 0$.]

## Q1/I

## Introduction

This question is based on the 'Fundamental Theorem of Calculus':
If $F(x)=\int_{a}^{x} f(t) d t$ [with different notation from the question], then $F^{\prime}(x)=f(x)$.

It amounts to saying that integration is the opposite of differentiation.

## Solution

For this question, $\frac{d I}{d A}=0 \Rightarrow 4-2^{a^{2}}=0 \Rightarrow a^{2}=2 \Rightarrow a=\sqrt{2}$ (as $a>0$ ).

So the answer is (b).

## Q1/J

## Solution

$a^{x}>c b^{y} \Rightarrow x \log a>\log c+y \log b$,
or $y<x \frac{\log a}{\log b}-\frac{\log c}{\log b}$
(The log can be to any base, but 'log' usually means to the base 10.)
y


Referring to the diagram, we require the gradient of the line $y=x \frac{\log a}{\log b}-\frac{\log c}{\log b}$ to be negative, in order for there to be a finite number of integer pairs $(x, y)$ satisfying the inequality (with $x \& y$ being positive).
(a) allows $a<1 \& b<1$, when $\log a<0 \& \log b<0$, so that $\frac{\log a}{\log b}>0$, and (a) can therefore be eliminated.
(b) also allows $a<1 \& b<1$, and can also be eliminated, as can (c).

For (d), $\log a<0 \& \log b>0$, so that $\frac{\log a}{\log b}<0$, as required.
So the answer is (d).

