2009 MAT - Q2 (3 pages; 27/8/20)

Solution

(i)
$$x_4 = 2x_3 - x_2 + 1 = 12 - 3 + 1 = 10$$

 $x_5 = 2x_4 - x_3 + 1 = 20 - 6 + 1 = 15$

(ii)
$$1 = A + B + C$$
 (1)
 $3 = A + 2B + 4C$ (2)
 $6 = A + 3B + 9C$ (3)
Subst. for A from (1) into (2) & (3),
 $3 = (1 - B - C) + 2B + 4C \Rightarrow B + 3C = 2$ (2a)
 $6 = (1 - B - C) + 3B + 9C \Rightarrow 2B + 8C = 5$ (3a)
Subst. for B from (2a) into (3a),

$$2(2 - 3C) + 8C = 5 \Rightarrow 2C = 1 \Rightarrow C = \frac{1}{2}$$

Then (2a) $\Rightarrow B = \frac{1}{2}$ and (1) $\Rightarrow A = 0$

(iii) [Assuming that n is supposed to be an integer; $x_{3.5}$, for example, wouldn't be defined]

To find the smallest real number satisfying $\frac{1}{2}x + \frac{1}{2}x^2 \ge 800$:

$$x^{2} + x - 1600 = 0 \Rightarrow x = \frac{-1 + \sqrt{1 + 6400}}{2}$$
 (as $x > 0$)

fmng.uk

The smallest integer will then be $\geq \frac{-1+\sqrt{6400}}{2} = \frac{79}{2}$,

and thus the required n is 40

[For a more rigorous proof, we could of course evaluate the quadratic for n = 39]

(iv) [From the fact that $\frac{x_n}{y_n}$ is supposed to have a limit, we can surmise that a quadratic expression is needed for y_n , given that

 x_n has a quadratic form.]

The 1st few terms for y_n are: 1, 5, 11, 19, 29, 41

The 1st differences are 4, 6, 8, 10, 12,

and the 2nd differences are all 2.

Therefore, y_n can be represented by a quadratic function of n, where the coefficient of n^2 is $\frac{1}{2}(2) = 1$ [this is a standard result, but we are demonstrating that the formula works]

Consider the 1st few terms for $y_n - n^2$: 0, 1, 2, 3, ...

Thus
$$y_n - n^2 = n - 1$$
,

and $y_n = n^2 + n - 1$

(We know that a quadratic formula exists, and there will only be one such formula that holds for 0, 1, 2)

[Alternative method: Let $y_n = D + En + Fn^2$, and find D, E & F as in (ii).]

$$\frac{x_n}{y_n} = \frac{\frac{1}{2}n + \frac{1}{2}n^2}{n^2 + n - 1} = \frac{1}{2} \left(\frac{\frac{1}{n} + 1}{1 + \frac{1}{n} - \frac{1}{n^2}} \right) \to \frac{1}{2} \left(\frac{1}{1} \right) = \frac{1}{2}$$

[This makes use of a university level theorem that

 $lim \frac{f(n)}{g(n)} = \frac{limf(n)}{limg(n)}$, provided that limf(n) & limg(n) are both constants. It seems to be customary to use this theorem without further comment.]