2009 MAT - Q2 (3 pages; 27/8/20)

Solution

(i) $x_{4}=2 x_{3}-x_{2}+1=12-3+1=10$
$x_{5}=2 x_{4}-x_{3}+1=20-6+1=15$
(ii) $1=A+B+C$
$3=A+2 B+4 C$
$6=A+3 B+9 C$
Subst. for A from (1) into (2) \& (3),
$3=(1-B-C)+2 B+4 C \Rightarrow B+3 C=2(2 a)$
$6=(1-B-C)+3 B+9 C \Rightarrow 2 B+8 C=5(3 a)$
Subst. for B from (2a) into (3a),
$2(2-3 C)+8 C=5 \Rightarrow 2 C=1 \Rightarrow C=\frac{1}{2}$
Then (2a) $\Rightarrow B=\frac{1}{2}$ and (1) $\Rightarrow A=0$
(iii) [Assuming that n is supposed to be an integer; $x_{3.5}$, for example, wouldn't be defined]

To find the smallest real number satisfying $\frac{1}{2} x+\frac{1}{2} x^{2} \geq 800$:
$x^{2}+x-1600=0 \Rightarrow x=\frac{-1+\sqrt{1+6400}}{2} \quad($ as $x>0)$

The smallest integer will then be $\geq \frac{-1+\sqrt{6400}}{2}=\frac{79}{2}$, and thus the required n is 40
[For a more rigorous proof, we could of course evaluate the quadratic for $n=39$]
(iv) [From the fact that $\frac{x_{n}}{y_{n}}$ is supposed to have a limit, we can surmise that a quadratic expression is needed for y_{n}, given that x_{n} has a quadratic form.]

The 1 st few terms for y_{n} are: $1,5,11,19,29,41$
The 1st differences are $4,6,8,10,12$,
and the 2 nd differences are all 2.
Therefore, y_{n} can be represented by a quadratic function of n, where the coefficient of n^{2} is $\frac{1}{2}(2)=1$ [this is a standard result, but we are demonstrating that the formula works]

Consider the 1 st few terms for $y_{n}-n^{2}: 0,1,2,3, \ldots$
Thus $y_{n}-n^{2}=n-1$,
and $y_{n}=n^{2}+n-1$
(We know that a quadratic formula exists, and there will only be one such formula that holds for $0,1,2$)
[Alternative method: Let $y_{n}=D+E n+F n^{2}$, and find $D, E \& F$ as in (ii).]

$$
\frac{x_{n}}{y_{n}}=\frac{\frac{1}{2} n+\frac{1}{2} n^{2}}{n^{2}+n-1}=\frac{1}{2}\left(\frac{\frac{1}{n}+1}{1+\frac{1}{n}-\frac{1}{n^{2}}}\right) \rightarrow \frac{1}{2}\left(\frac{1}{1}\right)=\frac{1}{2}
$$

[This makes use of a university level theorem that $\lim \frac{f(n)}{g(n)}=\frac{\lim f(n)}{\operatorname{limg}(n)}$, provided that $\lim f(n) \& \operatorname{limg}(n)$ are both constants. It seems to be customary to use this theorem without further comment.]

