2008 MAT - Q3 (2 pages; 27/8/20)

Solution

(i) (A) $y=-f(x)$
(B) $y=f(-x)$
(C) $y=f(x-1)$
(ii) $\left[y=2^{-x^{2}}\right.$ will have similarities to $y=2^{-|x|}$, which can be obtained from $y=2^{x} \& y=2^{-x}$;
compare $y=2^{-x^{2}}$ with the standardised normal pdf:
$\left.y=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}\right]$
Although outside the MAT syllabus, we could find the gradient of $y=2^{-x^{2}}$ at $x=0$ as follows:
$\frac{d}{d x}\left(a^{x}\right)=(\ln a) a^{x}$
Setting $y=-x^{2}$,
$\frac{d}{d x}\left(2^{-x^{2}}\right)=\frac{d}{d y}\left(2^{y}\right) \frac{d y}{d x}=(\ln 2)\left(2^{y}\right)(-2 x)=-2(\ln 2) x\left(2^{-x^{2}}\right)$
So gradient of $y=2^{-x^{2}}$ at $x=0$ is 0 .
Also, the gradient is a continuous function.
Comparing $y=2^{-x^{2}}$ with $y=2^{-|x|}$:
$2^{-\frac{1}{4}}>2^{-\frac{1}{2}} \& 2^{-4}<2^{-2}$

Then $y=2^{2 x-x^{2}}=2^{1-(x-1)^{2}}=(2) 2^{-(x-1)^{2}}$, which is obtained from $y=2^{-x^{2}}$ by a translation of $\binom{1}{0}$, followed by a stretch in the y-direction of scale factor 2 (or the other way round).
[Note that part (iii) mentions $2^{-(x-c)^{2}}$, suggesting the above approach.]
(iii) $y=2^{-(x-c)^{2}}$ is obtained from $y=2^{-x^{2}}$ by a translation of $\binom{c}{0}$, and has its maximum at $x=c$. The area under the curve between 0 and 1 (equal to the integral) will be maximised when $c=1 / 2$, with the maximum value of the function $y=2^{-(x-c)^{2}}$ being in the middle - due to the symmetry of the curve.

