2008 MAT - Q2 (2 pages; 27/8/20)

Solution

(i) [Pure trial and error is of course possible]
$x_{1}{ }^{2}=1+2 y_{1}{ }^{2}$, so that x_{1} is odd
$y_{1}^{2}=\frac{x_{1}^{2}-1}{2}=\frac{\left(x_{1}-1\right)\left(x_{1}+1\right)}{2}=\frac{\text { even } \times \text { even }}{2}=$ even
Try $y_{1}=2$, giving $x_{1}=3$
(ii) $\left(3 x_{n}+4 y_{n}\right)^{2}-2\left(a x_{n}+b y_{n}\right)^{2}=x_{n}{ }^{2}-2 y_{n}{ }^{2}$
$\Rightarrow 9 x_{n}^{2}+16 y_{n}^{2}+24 x_{n} y_{n}-2 a^{2} x_{n}^{2}-2 b^{2} y_{n}{ }^{2}-4 a b x_{n} y_{n}$
$=x_{n}{ }^{2}-2 y_{n}{ }^{2}$
As this is to be true for all $x_{n} \& y_{n}$, equating coefficients:
$x_{n}{ }^{2}: 9-2 a^{2}=1$
$y_{n}{ }^{2}: 16-2 b^{2}=-2$
$x_{n} y_{n}: 24-4 a b=0$

From (1) \& (2), $a=2 \& b=3$, and these values satisfy (3).
(iii) If $x_{1}=3 \& y_{1}=2$ (from (i)),
then, with the $a \& b$ just found,
$x_{2}=3 x_{1}+4 y_{1}=17 \quad \& y_{2}=2 x_{1}+3 y_{1}=12$
$x_{3}=3 x_{2}+4 y_{2}=99 \& y_{3}=2 x_{2}+3 y_{2}=70$
So, from (2), $x_{3}{ }^{2}-2 y_{3}{ }^{2}=x_{2}{ }^{2}-2 y_{2}{ }^{2}=x_{1}{ }^{2}-2 y_{1}{ }^{2}=1$;
and hence $X^{2}-2 Y^{2}=1$, where $X=99 \& Y=70$

Check: $99^{2}-2\left(70^{2}\right)=(100-1)^{2}-2(4900)$
$=10000+1-200-9800=1$
(iv) $\frac{x_{n+1}}{y_{n+1}}=\frac{3 x_{n}+4 y_{n}}{2 x_{n}+3 y_{n}}=\frac{3\left(\frac{x_{n}}{y_{n}}\right)+4}{2\left(\frac{x_{n}}{y_{n}}\right)+3}$
in the limit as $\frac{x_{n}}{y_{n}} \rightarrow L$ (so that $\frac{x_{n+1}}{y_{n+1}} \rightarrow L$ also),
$L=\frac{3 L+4}{2 L+3} \Rightarrow 2 L^{2}+3 L=3 L+4 \Rightarrow L^{2}=2$ and $L=\sqrt{2}$
(As $x_{1} \& y_{1}$ are both positive, the expressions for $x_{n+1} \& y_{n+1}$ imply that subsequent $x_{n} \& y_{n}$ are also positive, and hence L is positive.)

