2008 MAT - Q2 (2 pages; 27/8/20)

Solution

(i) [Pure trial and error is of course possible] $x_1^2 = 1 + 2y_1^2$, so that x_1 is odd $y_1^2 = \frac{x_1^2 - 1}{2} = \frac{(x_1 - 1)(x_1 + 1)}{2} = \frac{\text{even} \times \text{even}}{2} = \text{even}$ Try $y_1 = 2$, giving $x_1 = 3$

(ii)
$$(3x_n + 4y_n)^2 - 2(ax_n + by_n)^2 = x_n^2 - 2y_n^2$$

$$\Rightarrow 9x_n^2 + 16y_n^2 + 24x_ny_n - 2a^2x_n^2 - 2b^2y_n^2 - 4abx_ny_n$$

$$= x_n^2 - 2y_n^2$$

As this is to be true for all $x_n \& y_n$, equating coefficients:

$$x_n^2: 9 - 2a^2 = 1 \quad (1)$$

$$y_n^2: 16 - 2b^2 = -2 \quad (2)$$

$$x_n y_n: 24 - 4ab = 0 \quad (3)$$

From (1) & (2), a = 2 & b = 3, and these values satisfy (3).

(iii) If $x_1 = 3 \& y_1 = 2$ (from (i)),

then, with the *a* & *b* just found,

$$x_2 = 3x_1 + 4y_1 = 17$$
 & $y_2 = 2x_1 + 3y_1 = 12$
 $x_3 = 3x_2 + 4y_2 = 99$ & $y_3 = 2x_2 + 3y_2 = 70$
So, from (2), $x_3^2 - 2y_3^2 = x_2^2 - 2y_2^2 = x_1^2 - 2y_1^2 = 1$;
and hence $X^2 - 2Y^2 = 1$, where $X = 99$ & $Y = 70$

fmng.uk

Check:
$$99^2 - 2(70^2) = (100 - 1)^2 - 2(4900)$$

= $10000 + 1 - 200 - 9800 = 1$

(iv)
$$\frac{x_{n+1}}{y_{n+1}} = \frac{3x_n + 4y_n}{2x_n + 3y_n} = \frac{3\left(\frac{x_n}{y_n}\right) + 4}{2\left(\frac{x_n}{y_n}\right) + 3}$$

in the limit as $\frac{x_n}{y_n} \to L$ (so that $\frac{x_{n+1}}{y_{n+1}} \to L$ also),

$$L = \frac{3L+4}{2L+3} \Rightarrow 2L^2 + 3L = 3L + 4 \Rightarrow L^2 = 2$$
 and $L = \sqrt{2}$

(As $x_1 \& y_1$ are both positive, the expressions for $x_{n+1} \& y_{n+1}$ imply that subsequent $x_n \& y_n$ are also positive, and hence *L* is positive.)