(i)

Referring to the diagram, from triangle T:

$$a = 1. \sin\theta \& b = 1. \cos\theta$$

$$\Rightarrow$$
 coordinates of Q are $(1 + a, 1 + b) = (1 + sin\theta, 1 + cos\theta)$

Gradient of PQR is
$$-\frac{OR}{OP} = -tan\theta$$

Eq'n of PQR is
$$y - (1 + cos\theta) = -tan\theta(x - [1 + sin\theta])$$

ie
$$y = 1 + \cos\theta - x \tan\theta + \tan\theta (1 + \sin\theta)$$

$$= \frac{1}{\cos\theta}(\cos\theta + \cos^2\theta + \sin\theta + \sin^2\theta) - x\tan\theta$$

$$= \frac{1}{\cos\theta} (1 + \cos\theta + \sin\theta) - x \tan\theta$$

or
$$y = sec\theta + 1 + tan\theta - xtan\theta$$

At P,
$$0 = sec\theta + 1 + tan\theta - xtan\theta$$

$$\Rightarrow x = \frac{\sec\theta + 1 + \tan\theta}{\tan\theta} = \csc\theta + \cot\theta + 1$$

and so the coordinates of P are $(cosec\theta + cot\theta + 1, 0)$

(ii) By reversing the roles of P and R, we see that $B\left(\frac{\pi}{2} - \theta\right) = A(\theta)$.

Let the area bounded by the circle and the x & y-axes be C (which is independent of θ).

Then
$$C = 1 - \frac{1}{4}\pi(1)^2 = 1 - \frac{\pi}{4}$$

And
$$A\left(\frac{\pi}{4}\right) + B\left(\frac{\pi}{4}\right) + C + \pi(1)^2 = Area(OPR)$$

$$\Rightarrow A\left(\frac{\pi}{4}\right) + A\left(\frac{\pi}{4}\right) + \left(1 - \frac{\pi}{4}\right) + \pi = \frac{1}{2}OP.OP$$

(as
$$OR = OP$$
 when $\theta = \frac{\pi}{4}$)

$$\Rightarrow 2A\left(\frac{\pi}{4}\right) + 1 + \frac{3\pi}{4} = \frac{1}{2}\left(cosec\left(\frac{\pi}{4}\right) + cot\left(\frac{\pi}{4}\right) + 1\right)^{2}$$

$$=\frac{1}{2}(\sqrt{2}+2)^2$$

So
$$A\left(\frac{\pi}{4}\right) = \frac{1}{4}(\sqrt{2} + 2)^2 - \frac{1}{2} - \frac{3\pi}{8}$$

$$= \frac{1}{2} + \sqrt{2} + 1 - \frac{1}{2} - \frac{3\pi}{8}$$

$$=\sqrt{2}+1-\frac{3\pi}{8}$$

(iii) Referring to the diagram in (i), area of ACP = area of QCP, and therefore $A(\theta) = 2 \times \text{area of ACP}$ – area of minor sector CAQ

fmng.uk

When
$$\theta = \frac{\pi}{3}$$
, area of ACP $= \frac{1}{2}(1)$ AP $= \frac{1}{2}(cosec(\frac{\pi}{3}) + cot(\frac{\pi}{3}))$
 $= \frac{1}{2}(\frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}}) = \frac{\sqrt{3}}{2}$

And area of minor sector CAQ =
$$\frac{\angle ACQ}{2\pi} \times \pi(1)^2 = \frac{(2\pi - \pi - \frac{\pi}{3})}{2} = \frac{\pi}{3}$$

So
$$A\left(\frac{\pi}{3}\right) = 2\left(\frac{\sqrt{3}}{2}\right) - \frac{\pi}{3} = \sqrt{3} - \frac{\pi}{3}$$
, as required.