2007 MAT - Multiple Choice (6 Pages; 27/8/20)

Q1/A

Introduction

A useful question to ask is: "What can we easily do?" In this case, we can break down the expression into powers of 2 and 3 .

It's only when we simplify the expression as much as possible that it becomes apparent that the problem is easily solved.

Solution
$\frac{6^{r+s} \times 12^{r-s}}{8^{r} \times 9^{r+2 s}}=\frac{2^{(r+s)+2(r-s)} \times 3^{(r+s)+(r-s)}}{2^{3 r} \times 3^{2(r+2 s)}}$
$=\frac{2^{3 r-s} \times 3^{2 r}}{2^{3 r} \times 3^{2 r+4 s}}$
$=\frac{1}{2^{s} \times 3^{4 s}}$
For this to be an integer, we require $s \leq 0$.
So the answer is (b).

Q1/B
Solution
$f(x)$ is maximised when $3 \sin ^{2}(10 x+11)=0$, and $f(x)=49$
So the answer is (c).

Q1/C
Solution
$7 \sin x+2 \cos ^{2} x=5$
$\Rightarrow 7 \sin x+2\left(1-\sin ^{2} x\right)=5$
$\Rightarrow 2 \sin ^{2} x-7 \sin x+3=0$
$\Rightarrow \sin x=\frac{7 \pm \sqrt{25}}{4}=3$ (reject) or $\frac{1}{2}$
For $0 \leq x \leq 2 \pi$, there are 2 sol'ns.
So the answer is (b).

Q1/D

Introduction

Drawing a diagram may indicate how to proceed with the problem.

Solution

From the diagram, we see that the required point must lie on the line joining the centres of the two circles. (If a different point is selected, then it is possible to reduce the distance $P Q$ by placing P and Q on the line joining the centres.)
[It is possible to find the intersection of the large circle with the line joining the centres, but this is quite time-consuming
(especially for a multiple choice question), and so it's worth looking for another method.]
[The official solution uses a vector approach. A variation of this approach, which doesn't use vectors, is to use linear interpolation.]

The distance between the two centres is 5 (from the Pythagorean triple ($3,4,5$)), and the required point is $\frac{2}{5}$ of the way along the line joining the centres, from the point $(5,4)$.

Taking a weighted average of the two centres [' linear interpolation']:
$\frac{2}{5}(1,1)+\frac{3}{5}(5,4)=\left(\frac{17}{5}, \frac{14}{5}\right)$ or $(3.4,2.8)$
So the answer is (a).

Q1/E

Solution

Write $f(x, n)=(1-x)^{n}(2-x)^{2 n}(3-x)^{3 n}(4-x)^{4 n}(5-x)^{5 n}$
If $x=1$, then $f(x, n)=0$, so that (a) and (d) are false.
With $x>5$, if n is odd, sign of $f(x, n)$ is $(-)(+)(-)(+)(-) \Rightarrow-$
So the answer is (b).
[As a check, with $x>5$, if n is even, sign of $f(x, n)$ is
$(+)(+)(+)(+)(+) \Rightarrow+]$

Q1/F

Solution

Let $y=2^{x}$

Then $8^{x}+4=4^{x}+2^{x+2}$
$\Rightarrow y^{3}+4=y^{2}+4 y$
or $f(y)=y^{3}-y^{2}-4 y+4=0$
Now, $f(1)=0$, so that $y-1$ is a factor of $f(y)$,
and $f(y)=(y-1)\left(y^{2}-4\right)$,
so that $2^{x}=1,2$ or -2 (reject)
This gives rise to 2 real sol'ns for $x(0$ and 1$)$.
So the answer is (c).

Q1/G

Solution

Let $f(x)=2^{-x} \sin ^{2}\left(x^{2}\right)$
As $f(0)=0$, (d) can be eliminated.
Also, as $f(0) \geq 0$, (b) can be eliminated.
The presence of x^{2} indicates that the peaks of the graph will not occur at regular intervals, and so (c) can be eliminated.

So the answer is (a).

Q1/H

Solution

By considering the integrals as areas under the curve, the equations can be converted into simultaneous equations in two unknowns: $A=\int_{0}^{1} f(x) d x \& B=\int_{1}^{2} f(x) d x$, with the required answer being $A+B$.

Thus $3 A+2 B=7$ and $(A+B)+B=1$
so that $2 B=7-3 A \& 2 B=1-A$
Hence $7-3 A=1-A$, and $A=3 ; B=-1$,
so that $A+B=2$
So the answer is (d).

Q1/I

Introduction

This is an example of a question that perhaps looks more complicated than it actually is.

Solution

a is maximised when $\left(\log _{10} b\right)^{2}$ is minimised; ie when $b=1$, giving $4\left(\log _{10} a\right)^{2}=1$,
so that $\log _{10} a=\frac{1}{2}$ (rejecting $-\frac{1}{2}$, as a is not maximised).
Thus $a=10^{\frac{1}{2}}$ or $\sqrt{10}$

Q1/J
Solution
Consider $n=1$ [as this is fairly quick to do]
The LHS is $100+\frac{1}{2}(100)(101)=5150$
As the LHS increases with n, the inequality will hold provided that $k<5150$

So the answer is (d).

Conclusion

This is a rather strange question, in that hardly any work is involved (especially for question J, which is often the hardest), if you happen to consider $n=1$ straightaway.

