Linear Interpolation (5 pages; 7/2/16)

(1) Theory

Approach A

Example: Suppose that the solution of $f(x)=0$ is known to lie between x_{1} and x_{2}, because $f\left(x_{1}\right)=-a$ and $f\left(x_{2}\right)=b$ (where $a \& b$ are $+v e$). We can find an approximate solution using linear interpolation by assuming that $f(x)$ is a straight line between x_{1} and x_{2} (see below).

By similar triangles, $\frac{b}{a}=\frac{\left(x_{2}-x\right)}{\left(x-x_{1}\right)}$
$=>b x-b x_{1}=\mathrm{ax}_{2}-\mathrm{ax}$
$=>\mathrm{x}(\mathrm{a}+\mathrm{b})=\mathrm{bx}_{1}+\mathrm{ax}_{2}$
$=>\mathrm{x}=\frac{b x_{1}+a x_{2}}{a+b}$
which can be thought of as a weighted average of x_{1} and x_{2}

Approach B

Example: If a population is P_{1} at time t_{1} and P_{2} at time t_{2}, linear interpolation can be used to estimate the population P_{t} at time t, by assuming that the population function is a straight line between P_{1} and P_{2} (see below).

We want a weighted average of P_{1} and P_{2}.
The two weights are $\frac{\left(t-t_{1}\right)}{\left(t_{2}-t_{1}\right)}$ and $\frac{\left(t_{2}-t\right)}{\left(t_{2}-t_{1}\right)}$.
If t is nearer t_{1} than t_{2} (as in this example), then the larger weight will be applied to P_{1}, so that:

$$
P_{t} \approx P_{1} \cdot \frac{\left(t_{2}-t\right)}{\left(t_{2}-t_{1}\right)}+P_{2} \cdot \frac{\left(t-t_{1}\right)}{\left(t_{2}-t_{1}\right)}
$$

This can also be rearranged as follows:

$$
\begin{aligned}
P_{t} & \approx P_{1} \cdot \frac{\left(t_{2}-t_{1}\right)}{\left(t_{2}-t_{1}\right)}+P_{1} \cdot \frac{\left(t_{1}-t\right)}{\left(t_{2}-t_{1}\right)}+P_{2} \cdot \frac{\left(t-t_{1}\right)}{\left(t_{2}-t_{1}\right)} \\
& =P_{1}+\left(P_{2}-P_{1}\right) \cdot \frac{\left(t-t_{1}\right)}{\left(t_{2}-t_{1}\right)}
\end{aligned}
$$

which can be interpreted as adding on the required proportion of $\left(P_{2}-P_{1}\right)$ to P_{1}.

Approach C

See below. Note that the points $(a, f(a)),(b, f(b)) \&(c, f(c))$ lie on a straight line (where $\mathrm{f}(\mathrm{c})$ is the approximation based on linear interpolation).

Then $f(c)=f(a)+m(c-a)$, where m is the gradient of the line
Hence $\mathrm{f}(\mathrm{c})=\mathrm{f}(\mathrm{a})+\frac{f(b)-f(a)}{b-a}(\mathrm{c}-\mathrm{a})$

(2) Straight Line Equation (involving linear interpolation)

Task: To find the equation of the sloping side of the trapezium (AB), by as many methods as possible (in the form $y=m x+c$).

Method 1a

Coordinates of A and B are $(r, h) \&(2 r, 0)$.
Hence equation is $\frac{y-0}{x-2 r}=\frac{h-0}{r-2 r} \Rightarrow y=-\frac{h}{r}(x-2 r)=-\frac{h}{r} x+2 h$

Method 1b

Or $\frac{y-h}{x-r}=\frac{h-0}{r-2 r} \Rightarrow y=-\frac{h}{r}(x-r)+h=-\frac{h}{r} x+2 h$

Method 2

gradient is $-\frac{h}{2 r}$ and y -intercept is 2 h (by similar triangles)
so $y=-\frac{h}{r} x+2 h$

Method 3a

The x-coordinate is r at A (when $y=h$) and 2 r at B (when $y=0$). By linear interpolation, at the general point (x, y) (but easier to consider a point between A and B):
$x=\frac{y}{h}(r)+\frac{h-y}{h}(2 r)$
$\Rightarrow x h=-r y+2 h r \Rightarrow y=-\frac{h}{r} x+2 h$

Method 3b

The y-coordinate is h at A (when $x=r$) and 0 at B (when $x=2 r$). By interpolation, at the general point (x, y) :
$y=\frac{2 r-x}{r}(h)+\frac{x-r}{r}(0)=-\frac{h}{r} x+2 h$

Method 4a

Also by interpolation,
$x=r+\frac{h-y}{h}(r) \Rightarrow h x=h r+(h-y) r \Rightarrow-y r=h x-2 h r$
$\Rightarrow y=-\frac{h}{r} x+2 h$

Method 4b

Or $x=2 r-\frac{y}{h}(r) \Rightarrow h x=2 h r-y r \Rightarrow y=-\frac{h}{r} x+2 h$

Method 4c

$y=h-\frac{x-r}{r}(h)=-\frac{h}{r} x+2 h$
[Note: $y=0+\frac{2 r-x}{r}(h)=-\frac{h}{r} x+2 h$ is effectively the same as Method 3b]

Method 5

The line in the diagram below has equation $y=h-\frac{h}{r} x$ (having y intercept of h and gradient $-\frac{h}{r}$)

Our line can be obtained by translating the above line by r to the right, which is achieved by replacing x with $x-r$.

Thus the new equation is $y=h-\frac{h}{r}(x-r)=-\frac{h}{r} x+2 h$

