Invariant Points \& Lines - Introduction (4 pages; 16/4/20)
See also:
"Invariant Points \& Lines - Conditions"
"Eigenvectors \& Invariance"
"Invariant Points \& Lines - Exercises"

(1) Lines of invariant points

(1.1) An invariant point of a transformation satisfies
$\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{x}{y}=\binom{x}{y}$
This may only have the solution $x=y=0$; ie when the Origin is the only invariant point.

For certain transformations however, there may be a line of invariant points.

It can be shown that lines of invariant points always pass through the Origin (see "Invariant Points \& Lines - Conditions").
(1.2) The line of invariant points for a reflection in the line $y=-x$ is the line itself. This can be verified, as follows:
$\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)\binom{x}{y}=\binom{x}{y}$
$\Rightarrow-y=x$ and $-x=y$
These equations are consistent, and give $y=-x$ as the line of invariant points.

(2) Invariant lines

(2.1) An invariant line of a transformation (not to be confused with a line of invariant points) is a line such that any point on the line transforms to a point on the line (not necessarily a different point). A line of invariant points is thus a special case of an invariant line.

It can be shown that invariant lines don't necessarily pass through the Origin (see "Invariant Points \& Lines - Conditions").
(2.2) The invariant lines for a reflection in the line $y=-x$ are:
(a) $y=-x$ (the line of invariant points), and
(b) all lines parallel to $y=x$

This can be verified, as follows:
Suppose that an invariant line has the equation $y=m x+k$.
[Strictly speaking, we should also consider lines of the form $x=\lambda$.
This possibility is considered for the next example.]
Then the image of a point on this line is determined as follows:

$$
\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)\binom{x}{m x+k}=\binom{-m x-k}{-x}
$$

For this image to lie on the line, we require that
$m(-m x-k)+k=-x$
Also, this must hold for all points on the line; ie every x.
Hence, equating coefficients of $x:-m^{2}=-1 \Rightarrow m= \pm 1$ and equating the constant terms: $-m k+k=0$; ie $k(1-m)=0$

Then, if $m=1$, the 2 nd condition is satisfied for all values of k.

This gives the lines $y=x+k$ (ie (b) above).
If $m=-1$, the 2 nd condition $\Rightarrow k=0$
This gives the line $y=-x$ ((a) above).
(2.3) Example
(i) Find the line of invariant points for the shear represented by the matrix $\left(\begin{array}{ll}4 & -3 \\ 3 & -2\end{array}\right)$
[A necessary and sufficient condition for a shear $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ can be shown to be $a d-b c=1$ and $a+d=2$.]
(ii) Find the other invariant lines of the shear, using a matrix method.

Solution
(i) $\left(\begin{array}{ll}4 & -3 \\ 3 & -2\end{array}\right)\binom{x}{y}=\binom{x}{y} \Rightarrow 4 x-3 y=x$ and $3 x-2 y=y$
ie $y=x$
(ii) Suppose that an invariant line has the equation $y=m x+k$
[The possibility of $x=\lambda$ is considered at the end.]
The image of a point on this line is:
$\left(\begin{array}{ll}4 & -3 \\ 3 & -2\end{array}\right)\binom{x}{m x+k}=\binom{4 x-3 m x-3 k}{3 x-2 m x-2 k}$
For this image to lie on the line, we require that
$m(4 x-3 m x-3 k)+k=3 x-2 m x-2 k$
Then, equating coefficients of $x: 4 m-3 m^{2}=3-2 m$
$\Rightarrow 3 m^{2}-6 m+3=0$ or $m^{2}-2 m+1=0$,
so that $(m-1)^{2}=0$ and hence $m=1$
Equating the constant terms: $-3 m k+k=-2 k$
$\Rightarrow 3 k(1-m)=0$, so that either $k=0$ or $m=1$
Combining the two conditions gives: $m=1$ and k can take any value; ie the invariant lines are of the form $y=x+k$.

This is to be expected for a shear, where the invariant lines are all the lines parallel to the shear line (which is the line of invariant points).
[Considering lines of the form $x=\lambda$:
$\left(\begin{array}{ll}4 & -3 \\ 3 & -2\end{array}\right)\binom{\lambda}{y}=\binom{4 \lambda-3 y}{3 \lambda-2 y}$
For this image to lie on the line, we require $4 \lambda-3 y=\lambda$, and this is only true for $y=\lambda$; ie the single point $\binom{\lambda}{\lambda}$. So there is no invariant line of the form $x=\lambda$.]

