Invariant Points \& Lines - Conditions (12 pages; 16/4/20)

See also:
"Invariant Points \& Lines - Introduction"
"Eigenvectors \& Invariance"

Contents

(A) Lines of the form $y=m x+k$
(B) Lines of the form $x=\lambda$
(C) Conclusions
(D) Examples
(A) Lines of the form $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{k}$

(A.1) Invariant lines

$\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{p}{m p+k}=\binom{a p+c(m p+k)}{b p+d(m p+k)}$
and so $b p+d(m p+k)=m\{a p+c(m p+k)\}+k$ for all p
Equating coefficients of $p: b+d m=a m+c m^{2}$
$\Rightarrow c m^{2}+(a-d) m-b=0$
Equating coefficients of $p^{0}: d k=m c k+k$
$\Rightarrow k(d-m c-1)=0$

Case 1: $c=0, a \neq d$
(1) $\Rightarrow m=\frac{b}{a-d}$
(2) $\Rightarrow k=0$ or $d=1$

So, when $d=1$, there are invariant lines $y=\frac{b}{a-1} x+k$
When $d \neq 1$, there is a single invariant line $y=\frac{b}{a-d} x$
Case 2: $c=0, a=d$
No solution unless $b=0$
When $b=0,(2) \Rightarrow k(d-1)=0$
When $d=1, M$ is the identity matrix - ie a trivial case.
When $d \neq 1$, there are invariant lines $y=m x$ (for any m)
(M represents an enlargement)
Case 3: $\boldsymbol{c} \neq 0$
For there to be a solution to (1), $(a-d)^{2}-4 c(-b) \geq 0$;
ie $(a+d)^{2}-4 a d+4 b c \geq 0$
ie $(\operatorname{tr} M)^{2} \geq 4|M|$, where the trace of $M, \operatorname{tr} M$ is defined as $a+d$ [For the general matrix $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$, $(\operatorname{tr} M)^{2}-4|M|=(a+d)^{2}-4(a d-b c)=(a-d)^{2}+4 b c$, so this condition is satisfied whenever $b \& c$ have the same sign.]

When this condition is satisfied, there will be two invariant lines through the Origin: $y=m_{1} x \& y=m_{2} x$
There will be one line when $(a-d)^{2}-4 c(-b)=0$; ie $(a+d)^{2}-4 a d+4 b c=0$, so that $(\operatorname{tr} M)^{2}=4|M|$

For there to be an invariant line that doesn't pass through the Origin, (2) $\Rightarrow m=\frac{d-1}{c}$

Then, from (1), $m=\frac{d-a \pm \sqrt{(a-d)^{2}+4 c b}}{2 c}$,
so that $\frac{d-1}{c}=\frac{d-a \pm \sqrt{(a-d)^{2}+4 c b}}{2 c}$
$\Rightarrow 2(d-1)-d+a= \pm \sqrt{(a-d)^{2}+4 c b}$
$\Rightarrow(d+a-2)^{2}=(a-d)^{2}+4 b c$
$\Rightarrow d^{2}+a^{2}+4+2 a d-4 d-4 a=a^{2}+d^{2}-2 a d+4 b c$
$\Rightarrow 4-4 d-4 a=-4 a d+4 b c$
$\Rightarrow 1-\operatorname{tr}(M)=-|M|$
ie $\operatorname{tr}(M)=|M|+1$

(A.2) Lines of invariant points must pass through the Origin

 (considering lines of the form $y=m x+k$ for the moment)Proof
Suppose that $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{x}{m x+k}=\binom{x}{m x+k}$, for all x,
where $k \neq 0$ (so that the line of invariant points is $y=m x+k$).
Then $a x+c(m x+k)=x \& b x+d(m x+k)=m x+k$
Equating coefficients of $x: a+c m=1 \& b+d m=m$
Equating coefficients of $x^{0}: c k=0 \& d k=k$
As $k \neq 0$, this leads to $c=0, d=1, a=1 \& b=0$;
ie $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is the identity matrix.

(A.3) Lines of invariant points

Suppose that there is a line of invariant points $y=m x$, so that $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{x}{m x}=\binom{x}{m x}$ for all x
ie $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{x}{m x}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{x}{m x}$
or $\left(\begin{array}{cc}a-1 & c \\ b & d-1\end{array}\right)\binom{x}{m x}=\binom{0}{0}$
For there to be a solution other than $x=0, y=0$,

$$
\begin{aligned}
& \left|\begin{array}{cc}
a-1 & c \\
b & d-1
\end{array}\right|=0 \\
& \Rightarrow(a-1)(d-1)-b c=0 \\
& \Rightarrow 1-(a+d)+a d-b c=0 \\
& \Rightarrow \operatorname{tr} M=|M|+1
\end{aligned}
$$

[As lines of invariant points are special cases of invariant lines, we expect that $(\operatorname{tr} M)^{2} \geq 4|M|$:
$\operatorname{tr} M=|M|+1 \Rightarrow(\operatorname{tr} M)^{2}-4|M|=(|M|+1)^{2}-4|M|$
$\left.=(1-|M|)^{2} \geq 0\right]$

(A.4) Eigenvalue approach (for lines passing through the Origin)

Suppose that $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{x}{m x}=\lambda\binom{x}{m x}$ for all x
[If $\lambda=1$, then $y=m x$ will be a line of invariant points; otherwise it will be an invariant line.]

Then $\left(\begin{array}{cc}a-\lambda & c \\ b & d-\lambda\end{array}\right)\binom{x}{m x}=\binom{0}{0}$
For this to have a solution other than $x=0$,
$\left|\begin{array}{cc}a-\lambda & c \\ b & d-\lambda\end{array}\right|=0$,
so that $(a-\lambda)(d-\lambda)-b c=0$
ie $\lambda^{2}-(a+d) \lambda+a d-b c=0$.
For λ to exist, $(a+d)^{2}-4(a d-b c) \geq 0$;
ie $(\operatorname{tr} M)^{2} \geq 4|M|$, as before
(B) Lines of the form $x=\lambda$

(B.1) Invariant lines

Suppose that $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{\lambda}{y}=\binom{\lambda}{y^{\prime}}$, for all y.
Then $a \lambda+c y=\lambda$ for all y,
so that $c=0$
Then $x=0$ is always an invariant line.
If $a=1$, then $x=\lambda$ is an invariant line, for all λ.

(B.2) Lines of invariant points

Suppose that $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{\lambda}{y}=\binom{\lambda}{y}$, for all y.
Then $a \lambda+c y=\lambda \Rightarrow c=0 \&$ either $\lambda=0$ or $a=1$
and $b \lambda+d y=y \Rightarrow d=1 \&$ either $b=0$ or $\lambda=0$
$\lambda \neq 0$
$\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is the identity matrix

So, for lines of the form $x=\lambda$ as well, lines of invariant points have to pass through the origin (excluding the trivial case where all lines are lines of invariant points).
$\lambda=0$
$\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ b & 1\end{array}\right)$

(C) Conclusions

(C.1) Lines of invariant points must pass through the Origin.
(C.2) For transformations $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ where $c \neq 0$, there will be a single invariant line (of the form $y=m x+k$) when $(\operatorname{tr} M)^{2}=4|M|$, and two such invariant lines when $(\operatorname{tr} M)^{2}>4|M|$ (and this condition is satisfied whenever $b \& c$ have the same sign).
(C.3) When $\operatorname{tr} M=|M|+1$, there will be invariant lines that don't pass through the Origin, and there will also be a line of invariant points of the form $y=m x$. The line of invariant points belongs to the family of invariant lines: they have the same gradient.

A shear is an example of this $(|M|=1 \& \operatorname{tr} M=2)$.

(D) Examples of cases

Note: All lines of invariant points are invariant lines.

$$
\text { (1) } c=0, a \neq d, d \neq 1 ; \operatorname{eg}\left(\begin{array}{ll}
2 & 0 \\
3 & 4
\end{array}\right)
$$

$y=\frac{b}{a-d} x \& x=0$ are invariant lines

Check

$\left(\begin{array}{ll}2 & 0 \\ 3 & 4\end{array}\right)\binom{x}{-\frac{3}{2} x}=\binom{2 x}{3 x-6 x}=\binom{2 x}{-3 x}=2\binom{x}{-\frac{3}{2} x}$,
so that $y=\frac{3}{2-4} x$ is an invariant line $\left[\binom{1}{-\frac{3}{2}}\right.$, or any multiple of it, is an eigenvector, with eigenvalue 2].

And a point of the form $\binom{0}{p}=p\binom{0}{1}$ will be mapped to $p\binom{0}{4}$, so that $x=0$ is an invariant line also.
(2) $c=0, a \neq d, d=1$; eg $\left(\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right)$
$y=\frac{b}{a-1} x+k$ are invariant lines
and $x=0$ is a line of invariant points

Check

$\left(\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right)\binom{x}{3 x+k}=\binom{2 x}{3 x+3 x+k}=\binom{2 x}{3(2 x)+k}$,
so that $y=3 x+k$ are invariant lines.
And a point of the form $\binom{0}{p}=p\binom{0}{1}$ will be mapped to
$p\binom{0}{1}=\binom{0}{p}$, so that $x=0$ is a line of invariant points.
(3) $c=0, a=d \neq 1, b=0$; eg $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
$y=m x($ for all $m) \& x=0$ are invariant lines

Check

$\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)\binom{x}{m x}=\binom{2 x}{2 m x}=\binom{2 x}{m(2 x)}$,
so that $y=m x$ (for all m) are invariant lines
(4) $c=0, a=1, d \neq 1$; eg $\left(\begin{array}{ll}1 & 0 \\ 3 & 4\end{array}\right)$
$y=\frac{b}{a-d} x \& x=\lambda($ for all $\lambda)$ are invariant lines

Check

$\left(\begin{array}{ll}1 & 0 \\ 3 & 4\end{array}\right)\binom{\lambda}{y}=\binom{\lambda}{y^{\prime}}$,
so that $x=\lambda$ (for all λ) are invariant lines
(5) $c=0, a=1, d=1 ; \operatorname{eg}\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right)$
shear in the y-direction
$x=\lambda$ (for all λ) are invariant lines
$x=0$ is a line of invariant points

Check

Consider $\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right)\binom{x}{m x+k}=\binom{x}{3 x+m x+k}$
If $y=m x+k$ is an invariant line,
then $3 x+m x+k=m x+k$,
but this is impossible.
(6) $c=0, a \neq 1, d=1, b=0$; $\operatorname{eg}\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$
stretch in the x-direction
$y=\frac{b}{a-1} x+k=k$ are invariant lines
$x=0$ is a line of invariant points
(7) $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
reflection in the y-axis
$y=\frac{b}{a-1} x+k=k$ are invariant lines;
$x=0$ is a line of invariant points
(8) $c \neq 0,(\operatorname{tr} M)^{2}>4|M|(\operatorname{eg} b c>0) ;$ eg $\left(\begin{array}{cc}2 & -4 \\ -3 & 5\end{array}\right)$
$y=m_{1} x \& y=m_{2} x$ are invariant lines

Check

$\left(\begin{array}{cc}2 & -4 \\ -3 & 5\end{array}\right)\binom{x}{m x+k}=\binom{2 x-4 m x-4 k}{-3 x+5 m x+5 k}$
Then $-3 x+5 m x+5 k=m(2 x-4 m x-4 k)+k$ for all x
$\Rightarrow-3+5 m=2 m-4 m^{2}$ (equating coeffs of x)
$\Rightarrow 4 m^{2}+3 m-3=0$
$\Rightarrow m=\frac{-3 \pm \sqrt{57}}{8}$
$\& 5 k=-4 m k+k$ (equating coeffs of $\left.x^{0}\right)$
$\Rightarrow k=0$ or $m=-1$
So $m=\frac{-3 \pm \sqrt{57}}{8}$ and $k=0$
and the invariant lines are $y=m_{1} x \& y=m_{2} x$
(9) $c \neq 0, \operatorname{tr} M=|M|+1 ; \operatorname{eg}\left(\begin{array}{cc}2 & -4 \\ -3 & 13\end{array}\right)$
$y=m_{1} x+k$ are invariant lines
$y=m_{2} x$ is a line of invariant points

Check

$\left(\begin{array}{cc}2 & -4 \\ -3 & 13\end{array}\right)\binom{x}{m x+k}=\binom{2 x-4 m x-4 k}{-3 x+13 m x+13 k}$
Then $-3 x+13 m x+13 k=m(2 x-4 m x-4 k)+k$ for all x
$\Rightarrow-3+13 m=2 m-4 m^{2}$ (equating coeffs of x)
$\Rightarrow 4 m^{2}+11 m-3=0$
$\Rightarrow(4 m-1)(m+3)=0$
$\Rightarrow m=\frac{1}{4}$ or -3
$\& 13 k=-4 m k+k\left(\right.$ equating coeffs of $\left.x^{0}\right)$
$\Rightarrow k=0$ or $m=-3$
So the invariant lines are $y=\frac{1}{4} x, y=-3 x+k$
For invariant points:
$\left(\begin{array}{cc}2 & -4 \\ -3 & 13\end{array}\right)\binom{x}{y}=\binom{x}{y}$
$\Rightarrow 2 x-4 y=x($ or $-3 x+13 y=y)$
$\Rightarrow y=\frac{1}{4} x$
$(10) c \neq 0,(\operatorname{tr} M)^{2}=4|M| ; \operatorname{eg}\left(\begin{array}{cc}2 & 2 \\ -2 & 6\end{array}\right)$
Single invariant line: $y=m x$ (for some m).

Check

For an invariant line of the form $y=m x+k:$
$\left(\begin{array}{cc}2 & 2 \\ -2 & 6\end{array}\right)\binom{x}{m x+k}=\binom{2 x+2 m x+2 k}{-2 x+6 m x+6 k}$
We require $-2 x+6 m x+6 k=m(2 x+2 m x+2 k)+k$
Equating coeffs of $x:-2+6 m=2 m+2 m^{2}$
$\Rightarrow 2 m^{2}-4 m+2=0$
$\Rightarrow m^{2}-2 m+1=0$
$\Rightarrow(m-1)^{2}=0 \Rightarrow m=1$
Equating coeffs of $x^{0}: 6 k=2 m k+k$
$\Rightarrow k=0$ or $m=\frac{5}{2}$
Hence $m=1 \& k=0$, and the single invariant line is $y=x$

For invariant points:
$\left(\begin{array}{cc}2 & 2 \\ -2 & 6\end{array}\right)\binom{x}{y}=\binom{x}{y}$
$\Rightarrow 2 x+2 y=x \Rightarrow y=-\frac{x}{2}$
and $-2 x+6 y=y \Rightarrow y=\frac{2 x}{5}$
So there is no solution (note that $\operatorname{tr} M \neq|M|+1$).

