Integration - Q4: Volume of Revolution / Surface Area

 (21/11/23)The region between the parabola $y^{2}=4 x$, the x-axis and the line $x=1$ is rotated about the x-axis through 360°.
(i) Find the exact volume generated:
(a) by integrating with respect to x
(b) by integrating with respect to the parameter t, where $x=t^{2}$ and $y=2 t$
(ii) Use the mean value of the function to carry out a rough check on your answer in (i).
(iii) Find the curved surface area associated with the volume generated in (i):
(a) by integrating with respect to x
(b) by integrating with respect to y
(c) by integrating with respect to t

Solution
(i)(a) Volume $=\pi \int_{0}^{1} y^{2} d x=\pi \int_{0}^{1} 4 x d x=\pi\left[2 x^{2}\right]_{0}^{1}$
$=2 \pi(1-0)=2 \pi$
(b) $x=0 \Rightarrow t=0 ; x=1 \Rightarrow t=1$

Volume $=\pi \int_{0}^{1} y^{2} \frac{d x}{d t} d t=\pi \int_{0}^{1}(2 t)^{2}(2 t) d t=8 \pi \int_{0}^{1} t^{3} d t$
$=8 \pi\left[\frac{1}{4} t^{4}\right]_{0}^{1}=2 \pi(1-0)=2 \pi$
(ii) Mean value $=\frac{1}{1-0} \int_{0}^{1} \sqrt{4 x} d x=2 \int_{0}^{1} x^{\frac{1}{2}} d x$
$=2\left[\begin{array}{l}x^{\frac{3}{2}} \\ \left(\frac{3}{2}\right)\end{array}\right] \begin{aligned} & 1 \\ & 0\end{aligned}=\frac{4}{3}$
Approximate volume is that of a cylinder of radius $\frac{4}{3}$ and length 1 ;
ie $\pi\left(\frac{4}{3}\right)^{2}(1)=\frac{16}{9} \pi$, which is reasonably close to 2π.
(iii)(a) Curved SA $=\int_{0}^{1} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$
$y=\sqrt{4 x}$ and $\frac{d y}{d x}=2\left(\frac{1}{2}\right) x^{-\frac{1}{2}}$
so that $S A=4 \pi \int_{0}^{1} x^{\frac{1}{2}} \sqrt{1+\frac{1}{x}} d x=4 \pi \int_{0}^{1} \sqrt{x+1} d x$
$=4 \pi\left[\frac{(x+1)^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}\right] \begin{aligned} & 1 \\ & 0\end{aligned}=\frac{8 \pi}{3}(2 \sqrt{2}-1)$
(b) Curved SA $=\int_{0}^{1} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$
$=\int_{x=0}^{x=1} 2 \pi y \sqrt{d x^{2}+d y^{2}}$ (informally)
$=\int_{0}^{2} 2 \pi y \sqrt{\left(\frac{d x}{d y}\right)^{2}+1} d y$
$y^{2}=4 x$, so that $\frac{d x}{d y}=\frac{1}{4}(2 y)$
and SA $=2 \pi \int_{0}^{2} y \sqrt{\frac{y^{2}}{4}+1} d y$
Then, as $\frac{d}{d y}\left(\frac{y^{2}}{4}\right)=\frac{2 y}{4}=\frac{y}{2}, \mathrm{SA}=4 \pi\left[\frac{\left(\frac{y^{2}}{4}+1\right)^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}\right]_{0}^{2}$
$=\frac{8 \pi}{3}(2 \sqrt{2}-1)$
(c) Curved SA $=\int_{0}^{1} 2 \pi y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
$x=t^{2}$ and $y=2 t$, so that $\frac{d x}{d t}=2 t$ and $\frac{d y}{d t}=2$
and SA $=\int_{0}^{1} 2 \pi(2 t) \sqrt{4 t^{2}+4} d t$
$=4 \pi \int_{0}^{1} 2 t \sqrt{t^{2}+1} d t$
$=4 \pi\left[\frac{\left(t^{2}+1\right)^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}\right]_{0}^{1}$
$=\frac{8 \pi}{3}(2 \sqrt{2}-1)$

