Integration – Q4: Volume of Revolution / Surface Area (21/11/23)

The region between the parabola $y^2 = 4x$, the *x*-axis and the line x = 1 is rotated about the *x*-axis through 360°.

(i) Find the exact volume generated:

(a) by integrating with respect to *x*

(b) by integrating with respect to the parameter *t*, where $x = t^2$ and y = 2t

(ii) Use the mean value of the function to carry out a rough check on your answer in (i).

(iii) Find the curved surface area associated with the volume generated in (i):

(a) by integrating with respect to *x*

(b) by integrating with respect to *y*

(c) by integrating with respect to t

Solution

(i)(a) Volume =
$$\pi \int_0^1 y^2 dx = \pi \int_0^1 4x \, dx = \pi [2x^2]_0^1$$

= $2\pi (1-0) = 2\pi$

(b)
$$x = 0 \Rightarrow t = 0; x = 1 \Rightarrow t = 1$$

Volume $= \pi \int_0^1 y^2 \frac{dx}{dt} dt = \pi \int_0^1 (2t)^2 (2t) dt = 8\pi \int_0^1 t^3 dt$
 $= 8\pi \left[\frac{1}{4}t^4\right]_0^1 = 2\pi(1-0) = 2\pi$

(ii) Mean value
$$= \frac{1}{1-0} \int_0^1 \sqrt{4x} \, dx = 2 \int_0^1 x^{\frac{1}{2}} \, dx$$

 $= 2 \left[\frac{x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)} \right]_0^1 = \frac{4}{3}$

Approximate volume is that of a cylinder of radius $\frac{4}{3}$ and length 1; ie $\pi \left(\frac{4}{3}\right)^2 (1) = \frac{16}{9}\pi$, which is reasonably close to 2π .

(iii)(a) Curved SA =
$$\int_0^1 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

 $y = \sqrt{4x} \text{ and } \frac{dy}{dx} = 2\left(\frac{1}{2}\right)x^{-\frac{1}{2}}$
so that $SA = 4\pi \int_0^1 x^{\frac{1}{2}} \sqrt{1 + \frac{1}{x}} dx = 4\pi \int_0^1 \sqrt{x + 1} dx$
 $= 4\pi \left[\frac{(x+1)^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}\right]_0^1 = \frac{8\pi}{3}(2\sqrt{2} - 1)$

fmng.uk

(b) Curved SA =
$$\int_0^1 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

= $\int_{x=0}^{x=1} 2\pi y \sqrt{dx^2 + dy^2}$ (informally)
= $\int_0^2 2\pi y \sqrt{\left(\frac{dx}{dy}\right)^2 + 1} dy$
 $y^2 = 4x$, so that $\frac{dx}{dy} = \frac{1}{4}(2y)$
and SA = $2\pi \int_0^2 y \sqrt{\frac{y^2}{4} + 1} dy$
Then, as $\frac{d}{dy} \left(\frac{y^2}{4}\right) = \frac{2y}{4} = \frac{y}{2}$, SA = $4\pi \left[\frac{\left(\frac{y^2}{4} + 1\right)^2}{\left(\frac{3}{2}\right)}\right]_0^2$

$$=\frac{8\pi}{3}(2\sqrt{2}-1)$$

(c) Curved SA =
$$\int_0^1 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

 $x = t^2$ and $y = 2t$, so that $\frac{dx}{dt} = 2t$ and $\frac{dy}{dt} = 2$
and SA = $\int_0^1 2\pi (2t)\sqrt{4t^2 + 4} dt$
 $= 4\pi \int_0^1 2t\sqrt{t^2 + 1} dt$
 $= 4\pi \left[\frac{(t^2+1)^2}{(\frac{3}{2})}\right]_0^1$
 $= \frac{8\pi}{3}(2\sqrt{2}-1)$