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Integration Methods (11 pages; 14/4/21)       

[The constant of integration is generally omitted in these notes.] 

See also Pure: "Integration Exercises" (Parts 1-4) and STEP: 

“Integration Ideas”. 
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(A) Substitutions 

(1) Substitutions may be considered to be of the following types 

(with possible overlap): 

(a) A linear substitution (ie of the form 𝑢 = 𝑎𝑥 + 𝑏) which will 

simplify the integrand (the expression being integrated), without 

introducing any unwanted complications from the change of 

variable (as 𝑑𝑢 = 𝑎𝑑𝑥).  

(b) A 'speculative' substitution, which has a good chance of 

simplifying the integrand, even after the complications from the 

change of variable.  

(c) Integrals of the form ∫ 𝑓(𝑥)ℎ(𝑔(𝑥)) 𝑑𝑥, where 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑔(𝑥), where it will be seen that the substitution 

𝑢 = 𝑔(𝑥) will work, provided that ℎ(𝑢) can be integrated. 

 

(2) Linear substitutions 

Example:  𝐼 = ∫ 𝑥(1 + 𝑥)
1

2 𝑑𝑥 
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Note that (1 + 𝑥)
1

2  can only be expanded as an infinite Binomial 

series. However, let 𝑢 = 1 + 𝑥, giving  𝐼 = ∫(𝑢 − 1)𝑢
1

2 𝑑𝑢, and the 

integrand can now be expanded. 

 

(3) 'Speculative' substitutions 

Example: 𝐼 = ∫ √1 − 𝑥2𝑑𝑥 

Let 𝑥 = 𝑠𝑖𝑛𝜃,  so that 𝑑𝑥 = 𝑐𝑜𝑠𝜃 𝑑𝜃 

Then  𝐼 = ∫ 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃𝑑𝜃 =
1

2
∫ 1 + 𝑐𝑜𝑠2𝜃 𝑑𝜃 

=
1

2
𝜃 +

1

4
𝑠𝑖𝑛2𝜃 =

1

2
𝜃 +

1

2
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃  

=
1

2
𝑎𝑟𝑐𝑠𝑖𝑛𝑥 +

1

2
𝑥√1 − 𝑥2  

(as can be confirmed by differentiation) 

 

Example: 𝐼 = ∫ √𝑥2 + 2𝑥 + 5 𝑑𝑥 = ∫ √(𝑥 + 1)2 + 22 𝑑𝑥 

Let 𝑥 + 1 = 2𝑠𝑖𝑛ℎ𝑦, so that 𝑑𝑥 = 2𝑐𝑜𝑠ℎ𝑦 𝑑𝑦 

and 𝐼 = 2 ∫ √𝑠𝑖𝑛ℎ2𝑦 + 1 (2𝑐𝑜𝑠ℎ𝑦) 𝑑𝑦 

= 4 ∫ 𝑐𝑜𝑠ℎ2𝑦 𝑑𝑦 = 2 ∫ 1 + cosh(2𝑦) 𝑑𝑦  

= 2𝑦 + sinh (2𝑦)  

= 2𝑎𝑟𝑠𝑖𝑛ℎ (
𝑥+1

2
) + 2𝑠𝑖𝑛ℎ𝑦𝑐𝑜𝑠ℎ𝑦  

= 2𝑎𝑟𝑠𝑖𝑛ℎ (
𝑥+1

2
) + (𝑥 + 1)√𝑠𝑖𝑛ℎ2𝑦 + 1  

= 2𝑎𝑟𝑠𝑖𝑛ℎ (
𝑥+1

2
) + (𝑥 + 1)√(

𝑥+1

2
)

2
+ 1  

Example: 𝐼 = ∫ √𝑥2 + 8𝑥 + 7 𝑑𝑥 = ∫ √(𝑥 + 4)2 − 32 𝑑𝑥 

Let 𝑥 + 4 = 3𝑐𝑜𝑠ℎ𝑦, so that 𝑑𝑥 = 3𝑠𝑖𝑛ℎ𝑦 𝑑𝑦 
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and 𝐼 = 3 ∫ √𝑐𝑜𝑠ℎ2𝑦 − 1 (3𝑠𝑖𝑛ℎ𝑦)𝑑𝑦 

= 9 ∫ 𝑠𝑖𝑛ℎ2𝑦 𝑑𝑦  

=
9

2
∫ cosh(2𝑦) − 1) 𝑑𝑦   

 (and then similarly to the previous example) 

 

(4) For integrals of the form 𝐼 = ∫ 𝑓(𝑥)ℎ(𝑔(𝑥)) 𝑑𝑥, where 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑎𝑔(𝑥), make the substitution 𝑢 = 𝑔(𝑥) if ∫ ℎ(𝑢)𝑑𝑢 

can be determined. 

Then 𝑑𝑢 = 𝑔′(𝑥) 𝑑𝑥 =
1

𝑎
𝑓(𝑥) 𝑑𝑥, so that 𝐼 = 𝑎 ∫ ℎ(𝑢) 𝑑𝑢 

Note: 𝑓(𝑥) has to be in the numerator of the integrand 

Example:  𝐼 = ∫ tan 𝑥  𝑑𝑥  =  ∫
sin 𝑥

cos 𝑥
  𝑑𝑥  

Integrating 𝑠𝑖𝑛𝑥  to give  −𝑐𝑜𝑠𝑥  reveals that the substitution 

𝑢 = 𝑐𝑜𝑠𝑥  will work: 

𝑑𝑢 = −𝑠𝑖𝑛𝑥 𝑑𝑥, so that 

𝐼 = − ∫
1

𝑢
𝑑𝑢 = −𝑙𝑛𝑢 = − ln(𝑐𝑜𝑠𝑥) = ln (𝑠𝑒𝑐𝑥)  

 

Example:  𝐼 = ∫ 𝑠𝑖𝑛𝑥𝑐𝑜𝑠2𝑥 𝑑𝑥 

Noting that ∫ 𝑠𝑖𝑛𝑥 𝑑𝑥 = −𝑐𝑜𝑠𝑥 , let 𝑢 = 𝑐𝑜𝑠𝑥,  

so that 𝑑𝑢 = −𝑠𝑖𝑛𝑥 𝑑𝑥, and 𝐼 = − ∫ 𝑢2 𝑑𝑢   

 

Example:  𝐼 = ∫
𝑠𝑖𝑛𝑥

𝑐𝑜𝑠2𝑥
𝑑𝑥 

The substitution 𝑢 = 𝑐𝑜𝑠𝑥 works here as well, 

giving 𝐼 = − ∫ 𝑢−2 𝑑𝑢 
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Example: ∫
𝑒𝑥

𝑒2𝑥+1
𝑑𝑥 

Here ∫ 𝑒𝑥𝑑𝑥 = 𝑒𝑥 , and we can integrate ∫
1

𝑢2+1
 𝑑𝑢 , so let 𝑢 = 𝑒𝑥 . 

 

Example:  𝐼 = ∫
1

𝑥𝑙𝑛𝑥
 𝑑𝑥  

Noting that ∫
1

𝑥
𝑑𝑥 = 𝑙𝑛𝑥, let 𝑢 = 𝑙𝑛𝑥, so that 𝑑𝑢 =

1

𝑥
𝑑𝑥, 

and 𝐼 = ∫
1

𝑢
 𝑑𝑢 = 𝑙𝑛 (𝑙𝑛𝑢) 

 

(B) Rearrangements 

Example:  ∫
1+𝑥

𝑥−1
 𝑑𝑥  = ∫

𝑥−1

𝑥−1
 𝑑𝑥  + ∫

2

𝑥−1
 𝑑𝑥   etc 

 

Example: ∫
1

1+𝑐𝑜𝑠𝑥
 𝑑𝑥 = ∫

1−𝑐𝑜𝑠𝑥

1−𝑐𝑜𝑠2𝑥
 𝑑𝑥 = ∫

1−𝑐𝑜𝑠𝑥

𝑠𝑖𝑛2𝑥
 𝑑𝑥 

= ∫ 𝑐𝑜𝑠𝑒𝑐2𝑥 𝑑𝑥 − ∫
𝑐𝑜𝑠𝑥

𝑠𝑖𝑛2𝑥
 𝑑𝑥 (and these can both be determined) 

 

Example: ∫ √1 + 𝑠𝑖𝑛2𝑥  𝑑𝑥  

1 + 𝑠𝑖𝑛2𝑥 = 1 + 𝑐𝑜𝑠 (
𝜋

2
− 2𝑥) = 1 + 𝑐𝑜𝑠2 (

𝜋

4
− 𝑥)  

= 2𝑐𝑜𝑠2(
𝜋

4
− 𝑥)  

 

Example:  ∫ 𝑡𝑎𝑛2𝜃 𝑑𝜃 = ∫ 𝑠𝑒𝑐2𝜃 − 1 𝑑𝜃 = 𝑡𝑎𝑛𝜃 − 𝜃  

 

Example: 𝐼 = ∫ 𝑠𝑒𝑐4𝜃 𝑑𝜃 = ∫ 𝑠𝑒𝑐2𝜃(1 + 𝑡𝑎𝑛2𝜃)𝑑𝜃 

[Spotting that ∫ 𝑠𝑒𝑐2𝜃 𝑑𝜃 = 𝑡𝑎𝑛𝜃] Let 𝑢 = 𝑡𝑎𝑛𝜃,  

so that 𝑑𝑢 = 𝑠𝑒𝑐2𝜃 𝑑𝜃, and  𝐼 = ∫ 1 + 𝑢2 𝑑𝑢 
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Example  ∫ 𝑠𝑒𝑐ℎ𝑥𝑡𝑎𝑛ℎ𝑥 𝑑𝑥  = ∫
𝑠𝑖𝑛ℎ𝑥

𝑐𝑜𝑠ℎ2𝑥
𝑑𝑥  

and then let  𝑢 = 𝑐𝑜𝑠ℎ𝑥 

 

In the case of hyperbolic functions, there is always the option of 

invoking the definition in terms of the exponential function. 

 

Example: ∫ 𝑠𝑒𝑐ℎ𝑥𝑑𝑥 = ∫
2

𝑒𝑥+𝑒−𝑥 𝑑𝑥 = 2 ∫
𝑒𝑥

𝑒2𝑥+1
𝑑𝑥   

Then let 𝑢 = 𝑒𝑥 , to give 2 ∫
1

𝑢2+1
𝑑𝑢 = 2𝑎𝑟𝑐𝑡𝑎𝑛(𝑒𝑥) 

 

Example: 𝐼 = ∫
1

𝑥4+1
𝑑𝑥 = ∫

𝑥−2

𝑥2+𝑥−2  𝑑𝑥 

[As a speculative substitution] Let 𝑥 = 𝑒𝑦 , so that 𝑑𝑥 = 𝑒𝑦𝑑𝑦  and 

𝑥−1𝑑𝑥 = 𝑑𝑦 

Then 𝐼 = ∫
𝑒−𝑦

𝑒2𝑦+𝑒−2𝑦 𝑑𝑦 =
1

2
∫

𝑒−𝑦

1

2
(𝑒2𝑦+𝑒−2𝑦)

𝑑𝑦 =
1

2
∫

𝑐𝑜𝑠ℎ𝑦−𝑠𝑖𝑛ℎ𝑦

cosh (2𝑦)
𝑑𝑦 

=
1

2
∫

𝑐𝑜𝑠ℎ𝑦

2𝑠𝑖𝑛ℎ2𝑦+1
𝑑𝑦 −

1

2
∫

𝑠𝑖𝑛ℎ𝑦

2𝑐𝑜𝑠ℎ2𝑦−1
𝑑𝑦  

(then let 𝑢 = 𝑠𝑖𝑛ℎ𝑦 & 𝑢 = 𝑐𝑜𝑠ℎ𝑦, respectively). 

 

(C) Integration by Parts 

(1) This is an obvious option whenever the integrand is a product 

of two expressions (or can be rearranged into this form). 

However, substitution will also a possibility, and may well be 

preferable - especially as there are potential drawbacks with 

Parts: 

(i) It may not be immediately clear which of the two expressions 

in the product needs to be integrated. 

(ii) Applying Parts may not result in an improvement. 
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(iii) Parts may not work, or we may end up where we started 

(though there are steps that can be taken to avoid this - see 

below). 

(iv) The process may be time-consuming if Parts has to be applied 

twice. 

 

(2) The Parts formulae is derived from the product rule for 

differentiation: 

𝑑

𝑑𝑥
(𝑢𝑣) =

𝑑𝑢

𝑑𝑥
𝑣 + 𝑢

𝑑𝑣

𝑑𝑥
   , where 𝑢 &  𝑣 are functions of 𝑥 

Integrating both sides then gives 

𝑢𝑣 = ∫
𝑑𝑢

𝑑𝑥
𝑣 𝑑𝑥 + ∫ 𝑢

𝑑𝑣

𝑑𝑥
 𝑑𝑥  

Then  ∫
𝑑𝑢

𝑑𝑥
𝑣 𝑑𝑥 = 𝑢𝑣 − ∫ 𝑢

𝑑𝑣

𝑑𝑥
 𝑑𝑥 

 

However, there is no need to write out all these symbols: note 

that one of the expressions in the product (
𝑑𝑢

𝑑𝑥
) is being integrated 

(to 𝑢) and that the integrated expression appears in both the 

terms on the RHS. The expression that is to be differentiated (𝑣) 

stays the same for the 1st term on the RHS, and is differentiated 

(to 
𝑑𝑣

𝑑𝑥
) only in the 2nd term. In order not to get confused, the two 

expressions in the original integral could be labelled with an I and 

a D (indicating that they are to be integrated and differentiated, 

respectively). 

 

(3) Standard situation 

Example  𝐼 = ∫ 𝑥 𝑠𝑖𝑛𝑥 𝑑𝑥 

In order to obtain a simpler integral on the RHS, we generally 

want to reduce the power of a term such as 𝑥𝑛 (but see below for 
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an exception). So 𝑥𝑛 should generally be differentiated. 

𝑠𝑖𝑛𝑘𝑥, 𝑐𝑜𝑠𝑘𝑥 & 𝑒𝑘𝑥  can be integrated or differentiated. 

Here  𝐼 = 𝑥(−𝑐𝑜𝑠𝑥) − ∫(1)(−𝑐𝑜𝑠𝑥)𝑑𝑥  etc 

 

Example  𝐼 = ∫ 𝑥(3𝑥 + 1)3𝑑𝑥 

Integrating  (3𝑥 + 1)3  and differentiating 𝑥, 

𝐼 = 𝑥 (
1

4
) (3𝑥 + 1)4 (

1

3
) − ∫(1) (

1

4
) (3𝑥 + 1)4 (

1

3
) 𝑑𝑥  

=
1

12
𝑥(3𝑥 + 1)4 −

1

12
∫(3𝑥 + 1)4𝑑𝑥  

=
1

12
𝑥(3𝑥 + 1)4 −

1

12
(

1

5
) (3𝑥 + 1)5 (

1

3
)  

=
(3𝑥+1)4

180
{15𝑥 − (3𝑥 + 1)} =

(3𝑥+1)4(12𝑥−1)

180
  

 

Example:  𝐼 = ∫ 𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥 𝑑𝑥 

Integrating 𝑐𝑜𝑠𝑥  and differentiating 𝑠𝑖𝑛𝑥 (to avoid unnecessary 

minus signs): 

𝐼 = ∫ 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑥 𝑑𝑥 = 𝑠𝑖𝑛𝑥. 𝑠𝑖𝑛𝑥 − ∫ 𝑐𝑜𝑠𝑥. 𝑠𝑖𝑛𝑥 𝑑𝑥 = 𝑠𝑖𝑛2𝑥 − 𝐼  

Hence 𝐼 =
1

2
𝑠𝑖𝑛2𝑥  

 

Example:  ∫
𝑙𝑛𝑥

𝑥
 𝑑𝑥 

Integrating 
1

𝑥
: 

𝐼 = ∫
𝑙𝑛𝑥

𝑥
 𝑑𝑥 = 𝑙𝑛𝑥. 𝑙𝑛𝑥 − ∫ 𝑙𝑛𝑥.

1

𝑥
 𝑑𝑥 = (𝑙𝑛𝑥)2 − 𝐼  

Hence  𝐼 =
1

2
(𝑙𝑛𝑥)2 
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Example:  ∫ ln 𝑥 𝑑x 

write as  ∫ 1 . ln 𝑥 𝑑x    

Integrating 1, 

𝐼 = 𝑥𝑙𝑛𝑥 − ∫ 𝑥(1/𝑥)𝑑𝑥 = 𝑥𝑙𝑛𝑥 − 𝑥  

 

(4) When applying Parts twice, the function resulting from 

integrating one of the components always has to be integrated 

again (to avoid going round in circles). 

 

Example:  𝐼 = ∫ 𝑠𝑖𝑛𝑥 . 𝑒𝑥 𝑑𝑥 

Integrating 𝑒𝑥 , for example, 

𝐼 = 𝑠𝑖𝑛𝑥𝑒𝑥 − ∫ 𝑐𝑜𝑠𝑥𝑒𝑥𝑑𝑥  

Then integrating 𝑒𝑥 again, to apply Parts for a 2nd time: 

𝐼 = 𝑠𝑖𝑛𝑥𝑒𝑥 − {𝑐𝑜𝑠𝑥𝑒𝑥 − ∫(−𝑠𝑖𝑛𝑥)𝑒𝑥 𝑑𝑥}  

 = (𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥)𝑒𝑥 − 𝐼 

so that  𝐼 =
1

2
(𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥)𝑒𝑥 

[If we had chosen to differentiate 𝑒𝑥 , this would have given 

𝐼 = 𝑠𝑖𝑛𝑥𝑒𝑥 − {𝑠𝑖𝑛𝑥𝑒𝑥 − ∫ 𝑠𝑖𝑛𝑥𝑒𝑥 𝑑𝑥} = 𝐼] 

 

(5) Definite integral 

Example:  𝐼 = ∫ (
𝑙𝑛𝑥

𝑥
)

2
𝑑𝑥

𝑒

1
 

Writing the integrand as 
1

𝑥2 (𝑙𝑛𝑥)2 and differentiating (𝑙𝑛𝑥)2: 

𝐼 = [−
1

𝑥
 (𝑙𝑛𝑥)2]

𝑒
1

− ∫ (−
1

𝑥
) 2𝑙𝑛𝑥 (

1

𝑥
) 𝑑𝑥

𝑒

1
  

= − (
1

𝑒
− 0) + 2 ∫

𝑙𝑛𝑥

𝑥2 𝑑𝑥
𝑒

1
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Then differentiating 𝑙𝑛𝑥, to apply Parts again: 

𝐼 = −
1

𝑒
+ 2 [−

1

𝑥
𝑙𝑛𝑥]

𝑒
1

− 2 ∫ (−
1

𝑥
) (

1

𝑥
) 𝑑𝑥

𝑒

1
  

= −
1

𝑒
− 2 (

1

𝑒
− 0) + 2 ∫

1

𝑥2 𝑑𝑥
𝑒

1
  

= −
3

𝑒
+ 2 [−

1

𝑥
]

𝑒
1

= −
3

𝑒
− 2 (

1

𝑒
− 1) = 2 −

5

𝑒
  

 

(6) Parts doesn't always work: 

Example: ∫
1

𝑥𝑙𝑛𝑥
 𝑑𝑥  

Differentiating  
1

𝑙𝑛𝑥
 : 

𝐼 = 𝑙𝑛𝑥 .
1

𝑙𝑛𝑥
− ∫ 𝑙𝑛𝑥 .  (−1)(𝑙𝑛𝑥)−2 (

1

𝑥
) 𝑑𝑥  

= 1 + 𝐼   ?! 

The apparent contradiction is due to the constant of integration. 

Thus Parts can't be used to find this integral, but the substitution 

𝑢 = 𝑙𝑛𝑥 works , as already seen.  

 

(D) Reduction formulae 

Integration by Parts can sometimes enable a recurrence relation 

to be set up.  

Example: 𝐼𝑛 =  ∫ 𝑥𝑛𝑒−𝑥 𝑑𝑥
1

0
 

Integrating 𝑒−𝑥   and differentiating  𝑥𝑛 gives: 

𝐼𝑛 = [  −𝑒−𝑥  𝑥𝑛 ]
1
0

   − ∫ −𝑛𝑥𝑛−1𝑒−𝑥 𝑑𝑥
1

0
 

=   −𝑒−1 + 0  + 𝑛𝐼𝑛−1 

Thus   𝐼𝑛 =  𝑛𝐼𝑛−1 −𝑒−1 

Then, since 𝐼0 =  ∫ 𝑒−𝑥 𝑑𝑥
1

0
 = [ −𝑒−𝑥  ]

1
0

  =   −𝑒−1 + 1 =  1 − 𝑒−1, 
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𝐼1 =   (1 − 𝑒−1)  −𝑒−1  =  1 − 2𝑒−1, 

𝐼2 =   2(1 − 2𝑒−1) −𝑒−1  = 2 − 5𝑒−1 etc 

 

Example: 𝐼𝑛 = ∫ 𝑐𝑜𝑠𝑛𝑥
𝜋

0
  𝑑𝑥    

Integrating by Parts (writing as 𝑐𝑜𝑠𝑥 .  𝑐𝑜𝑠𝑛−1𝑥  and 

differentiating 𝑐𝑜𝑠𝑛−1𝑥)  

leads to  𝐼𝑛 =  
𝑛−1

𝑛
 𝐼𝑛−2 

Hence ∫ 𝑐𝑜𝑠4𝑥
𝜋

0
  =  

3

4
 𝐼2 =  

3

4
 .  

1

2
 ∫ 1 𝑑𝑥

𝜋

0
 = 

3𝜋

8
 

 

Example: 𝐼𝑛 = ∫
𝑥𝑛

√1−𝑥
 𝑑𝑥

1

0
 

𝐼𝑛 =  [𝑥𝑛 .  
(1−𝑥)1/2

−1/2
 ] 

1
0

   − ∫ 𝑛𝑥𝑛−11

0

(1−𝑥)1/2

−1/2
𝑑𝑥 

= 0 + 2𝑛 ∫ 𝑥𝑛−1.  
(1−𝑥)

(1−𝑥)1/2

1

0
  𝑑𝑥  

(forcing the integrand into the form of 𝐼𝑛) 

= 2𝑛(𝐼𝑛−1 −  𝐼𝑛) 

⇒  (1 + 2𝑛)𝐼𝑛 = 2𝑛𝐼𝑛−1    

⇒  𝐼𝑛 =  
2𝑛𝐼𝑛−1

2𝑛+1
  

 

Notes 

(i) Reduction formulae can also be derived for indefinite integrals. 

(ii) Sometimes the integrand can be rearranged to give the 

reduction formula, without performing integration by Parts  

eg ∫ 𝑡𝑎𝑛𝑛𝑥𝑑𝑥 = ∫ 𝑡𝑎𝑛𝑛−2𝑥(𝑠𝑒𝑐2𝑥 − 1)𝑑𝑥   

=
1

𝑛−1
𝑡𝑎𝑛𝑛−1𝑥 − ∫ 𝑡𝑎𝑛𝑛−2𝑥 𝑑𝑥 (as 𝑠𝑒𝑐2𝑥 is the derivative of 𝑡𝑎𝑛𝑥) 



  fmng.uk 

11 
 

(iii) Reduction formulae are often associated with a proof by 

induction. 

(iv) If 𝐼𝑛 = ⋯ 𝐼𝑛−2 , the result will depend on whether 𝑛 is odd or 

even. 

 


